
CORBA EXPLAINED SIMPLY

A concise book for people who want a technical
understanding of the concepts and terminology of

CORBA without learning the low-level details

Ciaran McHale

www.CiaranMcHale.com

Availability and Copyright

Availability

You can get this book, free of charge, fromwww.CiaranMcHale.com. The
download page on the web site, (www.CiaranMcHale.com/download), pro-
vides links to download the book in the following formats:

• A PDF file formatted for A5 paper, which is slightly larger than a pa-
perback novel. The small page size, combined with embedded hypertext
links, makes it suitable for on-screen reading.

• A “2-up” PDF file (without any hypertext links), in which two A5 pages
are placed side by side. This version will save you paper if you want
to print the book on A4 paper, which is the most common size paper in
Europe. If you print this document on US Letter paper (which is slightly
shorter and wider than A4 paper) then thePrint. . . dialog box in Adobe
Acrobat Reader has aAuto-Rotate and Centeroption that you can use
make the document print better.

• An archive of HTML. You can get this as a Windows-friendly zip file or,
if you prefer, as a UNIX-friendly compressed tar file.

Alternatively, if you want to browse this book online before deciding to down-
load it then go towww.CiaranMcHale.com/corba-explained-simply.

Copyright

Copyright© 2007 Ciaran McHale.

Permission is hereby granted, free of charge, to any person obtaining a copy of
this book to use, copy, publish, distribute, sublicense, and/or sell copies of the

book, and to permit persons to whom the book is furnished to do so, subject to
the following conditions:

• The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the book.

• Although the authors have taken care in the preparation of this book,
they make no express or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for inci-
dental or consequential damages in connection with or arising out of the
use of the information contained herein. All opinions expressed in this
book are solely those of the authors.

This version of the book was produced on February 27, 2007.

Trademarks

Orbix, Orbacus, IONA, IONA Technologies, the IONA logo and Making Soft-
ware Work Together are trademarks or registered trademarks of IONA Tech-
nologies PLC and/or its subsidiaries. Java, J2EE, JavaBean and Write Once,
Run Everywhere are trademarks or registered trademarks of Sun Microsys-
tems, Inc. in the United States and in other countries. TAO is a trademark
or registered trademark of Washington University. IBM, MQ Series, OS/390
and AS/400 are trademarks or registered trademarks of International Business
Machines Corporation. COM and .NET are trademarks or registered trade-
marks of Microsoft. Open VMS is a trademark or registered trademark of
Hewlett Packard. TIBCO Rendezvous is s trademark or registered trademark of
TIBCO. Amazon.com is a trademark or registered trademark of Amazon.com
Inc. wxWindows is a trademark or registered trademark of wxWindows Soft-
ware Foundation. Windows is a trademark or registered trademark of Microsoft
Corporation. Oracle is a trademark or registered trademark of Oracle Corpo-
ration. Berkeley DB is a trademark or registered trademark of Sleepycat Soft-
ware, Inc. Linux is a trademark or registered trademark of Linus Torvalds.
Mac OS X is a trademark or registered trademark of Apple Computer Inc.
CORBA is a trademark or registered trademark of the Object Management
Group, Inc. in the United States and other countries. All other trademarks that
appear herein are the property of their respective owners.

For my mother, Alice, and my wife, Bianca
Also for JS and TUF

Contents

Preface xi
Intended Audience . xi
How to Read this Book. xii
About the Author . xii
About the Contributing Author. xii
Disclaimer. xiii
Acknowledgments. xiii

I Introduction to CORBA 1

1 Core Concepts and Terminology 3
1.1 Object Management Group (OMG). 3
1.2 CORBA . 3
1.3 Client and Server. 5
1.4 Interface Definition Language (IDL). 5

1.4.1 The C++ Preprocessor. 8
1.4.2 Common IDL Idioms. 9

1.4.2.1 Factory Interfaces. 9
1.4.2.2 Callback Interfaces. 10
1.4.2.3 Iterator Interfaces. 10

1.4.3 Limitations of IDL 11
1.4.4 Mapping IDL to a Programming Language. 13
1.4.5 IDL Compilers . 13

1.5 Interoperable Object Reference (IOR). 14
1.6 CORBA Services. 14

i

2 Benefits of CORBA 17
2.1 Maturity . 17
2.2 Open standard. 18
2.3 Wide platform support . 18
2.4 Wide language support. 19
2.5 Efficiency . 19
2.6 Scalability. 20
2.7 CORBA Success Stories. 20

II Application Development 23

3 Development of CORBA Applications 25
3.1 Development of a Traditional Application. 25
3.2 Development of a CORBA Application. 25

3.2.1 IDL Files and Generated Code. 26
3.2.2 Servant Classes. 28
3.2.3 Server Mainline. 29
3.2.4 Client Mainline. 31

3.3 Critique of CORBA Application Development. 31
3.4 Miscellaneous Notes. 33

3.4.1 resolve initial references() 33
3.4.2 Stringified Object References. 34
3.4.3 The Tie Approach to Implementing Servants. 34

4 The Naming Service 37
4.1 Basic Concepts. 37
4.2 Imperfections in the IDL. 40
4.3 Practical Usage of the Naming Service. 43

5 Concepts for Server-side Programming 45
5.1 Object . 45
5.2 Servant . 45
5.3 Why are Object and Servant Different Concepts?. 46
5.4 Object Adapters. 46
5.5 Portable Object Adapter (POA). 47

5.5.1 POA Hierarchy. 48
5.6 Different Kinds of POA. 50

5.6.1 POA kind 1: “Simple” 51
5.6.2 POA kind 2: “Lazy Loader”. 52
5.6.3 POA kind 3: “Cache”. 54

ii

5.6.4 POA kind 4: “Default Servant”. 55
5.6.5 Other POA kinds. 55

5.7 POA Managers. 56

6 POA Policies 59
6.1 Available POA Policies. 59

6.1.1 Policies that Determine the POA’s Kind. 59
6.1.2 Multi- and Single-threaded Policy Values. 60

6.1.2.1 TheORBCTRL MODELPolicy Value. . . . 61
6.1.2.2 TheSINGLE THREADMODELandMAIN

THREADMODELPolicy Values. 61
6.1.3 Policy Values for Object Lifetimes and Naming. . . . 62
6.1.4 Transactional Object Policy Values. 64
6.1.5 Implicit and Explicit Activation Policy Values. 64
6.1.6 Proprietary Policy Values. 65

6.2 Creating Policy Objects and POAs. 65

III Application Deployment 67

7 Implementation Repository (IMR) 69
7.1 Introduction. 69
7.2 IMR Concepts. 70

7.2.1 Registering a Server with the IMR. 70
7.2.2 Manually Running a Server. 71
7.2.3 Client Interaction with a Server and the IMR. 74
7.2.4 Distributed Implementation Repositories. 77

7.3 Examples of Implementation Repositories. 80
7.3.1 Orbix . 80
7.3.2 Orbacus. 81
7.3.3 TAO. 82

7.4 Comparison of Different IMRs. 82

8 Deploying CORBA Applications 85
8.1 Deploying CORBA Clients. 85
8.2 Deploying CORBA Servers. 86

8.2.1 Overview of TCP Concepts. 87
8.2.2 Deployment Models for CORBA Servers. 88

8.3 The Naming Service and the IMR. 91

iii

IV CORBA Infrastructure 93

9 More Details on IDL 95
9.1 Pseudo-IDL,local andnative types 95
9.2 Objects By Value (OBV). 96

9.2.1 The Java Equivalent of OBV. 96
9.2.2 Objects By Value in CORBA. 98

9.3 Versioning. 100
9.4 Repository IDs . 102
9.5 Miscellaneous New Keywords. 104

10 Interoperable Object Reference (IOR) 105
10.1 Introduction. 105
10.2 IDL Definition of an IOR. 105

10.2.1 Space Optimization. 107
10.2.2 IIOP Contact Details. 108
10.2.3 The use ofTaggedComponent entries in an IOR. . 108

10.3 Proxy . 110

11 On-the-wire Protocols 111
11.1 GIOP, IIOP and the Protocol Stack. 111
11.2 Marshaling IDL Types . 113
11.3 GIOP Message Types. 114

11.3.1 Request and Reply Messages. 115
11.3.2 LocateRequest and LocateReply Messages. 115
11.3.3 Fragment Messages. 115
11.3.4 CancelRequest Messages. 116
11.3.5 CloseConnection Messages. 116
11.3.6 MessageError Messages. 116

11.4 GIOP Redirection. 117
11.5 Active Connection Management (ACM). 118
11.6 Service Contexts. 119
11.7 Codeset Negotiation. 120
11.8 Bidirectional GIOP/IIOP. 121

12 Thecorbaloc and corbaname URLs 123
12.1 Introduction. 123
12.2 Thecorbaloc URL . 123
12.3 Thecorbaname URL . 125
12.4 Architectural Support forcorbaloc 125

12.4.1 Client-side Support forcorbaloc 125

iv

12.4.2 Server-side Support forcorbaloc 126
12.5 Bootstrapping Interoperability Problems. 127

13 Current Objects 131
13.1 The Concept of Thread-local Data. 131
13.2 Current Objects Provide Thread-local Data. 131

14 Portable Interceptors 133
14.1 IOR Interceptors . 133
14.2 Request Interceptors. 134
14.3 The PICurrent Object. 134

15 Meta-information Programming 137
15.1 What is Meta-information Programming?. 137

15.1.1 Uses of Meta-information Programming. 138
15.2 TypeCodes and the Interface Repository. 139
15.3 Theany andDynAny Types 140
15.4 Dynamic Invocation Interface (DII). 141
15.5 Dynamic Server Interface (DSI). 143

16 CORBA Messaging 145
16.1 Quality of Service (Policy Objects). 145
16.2 Asynchronous Messaging Interface (AMI). 147
16.3 Time Independent Invocations (TII). 149
16.4 Further Reading. 151

17 Proprietary Fault Tolerance 153
17.1 Basic Issues in Fault Tolerance. 153

17.1.1 Replication Granularity. 153
17.1.2 Contact Details for a Replicated Object. 154
17.1.3 Use ofPERSISTENTPOAs 155

17.2 Example Products. 155
17.2.1 OmniORB . 155
17.2.2 Orbix . 157

17.2.2.1 Deploying a Replicated Serverwith an IMR 157
17.2.2.2 Deploying a Replicated Serverwithoutan IMR158

17.2.3 Orbacus. 161
17.2.4 Server-side support forcorbaloc URLs 162
17.2.5 Critique. 162

17.3 Miscellaneous Issues. 163
17.3.1 Fault Tolerance is not Load Balancing. 163

v

17.3.2 Timeout Values in a Fault Tolerant System. 164

18 CORBA Fault Tolerance 165
18.1 Terminology and Basic Infrastructure. 165

18.1.1 TheObjectGroupManager Interface 165
18.1.2 TheGenericFactory Interface. 166
18.1.3 ThePropertyManager Interface. 167

Factories. 167
Replication style.. 168
Initial and minimum number of replicas.. . . . 169
Membership style. 169
Consistency style and checkpoint interval.. . . 169
Fault monitoring, interval & timeout, and gran-

ularity. 170
18.1.4 TheReplicationManager Interface 171

18.2 Writing CORBA-FT Servers. 171
18.2.1 Modifications to IDL Interfaces. 171
18.2.2 Creating and Destroying Replicated Objects. 172
18.2.3 Registering Server Replicas with CORBA-FT. 173

18.3 CORBA-FT Support in Clients. 174
18.3.1 Keeping IOGRs Up to Date. 174
18.3.2 Making Sure Clients Invoke on Primary Members. . . 175
18.3.3 Transparent Retries of Failed Invocations. 175
18.3.4 Heartbeat Messages. 176

18.4 Logging and Recovery Infrastructure. 176
18.5 Fault Notifiers. 177
18.6 Critique . 179

19 Other CORBA Infrastructure 181
19.1 Real-time CORBA . 181
19.2 CORBA for Embedded Systems. 181
19.3 CORBA Component Model (CCM). 182

V CORBA Services 185

20 Trading Service 187
20.1 TheServiceTypeRepository Interface 187

20.1.1 Theadd type() andremove type() operations. 188
20.1.2 Themask type() andunmask type() operations 190

20.2 TheRegister Interface. 190

vi

20.2.1 Theexport() andwithdraw() operations. . . . 191
20.2.2 Themodify() operation 192

20.3 TheLookup Interface . 192
20.4 Other Capabilities of the Trading Service. 194
20.5 Using the Trading Service. 194
20.6 Quality of Service. 195

21 Object Transaction Service 197
21.1 Associating CORBA Objects with Database Records. 197
21.2 Per-operation Transactions. 198
21.3 Overview of Distributed Transactions. 198
21.4 CORBA Object Transaction Service (OTS). 201
21.5 The Raw API of OTS. 203
21.6 How OTS Builds on Top of Other Parts of CORBA. 205

22 Publish and Subscribe Services 207
22.1 What is Publish and Subscribe?. 207

22.1.1 Emulating Different Communication Models. 208
22.1.2 CORBA Services for Publish and Subscribe. 209

22.2 Event Service. 209
22.2.1 The Push Model. 209
22.2.2 The Pull Model. 212
22.2.3 Limitations of the Event Service. 213

22.3 Notification Service. 214
22.3.1 IDL Interfaces . 214
22.3.2 StructuredEvent 215
22.3.3 EventBatch . 217
22.3.4 Filters. 217

22.3.4.1 Filters to Remove Messages. 218
22.3.4.2 Filters for Message Timeouts and Priorities. 218

22.3.5 ConsumerAdmin andSupplierAdmin 219
22.3.6 EventChannel . 219
22.3.7 Quality of Service (QoS). 221

22.4 Telecom Log Service. 223

23 Security 225
23.1 Features of CORBASEC. 225
23.2 CORBASEC Conformance Levels. 227

23.2.1 CORBASEC Level 1. 227
23.2.2 CORBASEC Level 2. 228

vii

23.2.2.1 Security Aware APIs. 228
23.2.2.2 Delegation. 228
23.2.2.3 Access Control. 229

23.2.3 Non-repudiation Package. 230
23.2.4 Security Replaceability Packages. 230
23.2.5 Secure Interoperability. 230

23.2.5.1 Common Secure Interoperability (CSI) Fea-
ture Packages. 230

23.2.5.2 Common Security Protocol Packages. . . . 231
23.2.5.3 CSI Version 2 Security Attribute Service

(CSIv2 SAS) Protocol. 232
23.3 Issues Not Covered by CORBASEC. 233

23.3.1 Configuration. 233
23.3.2 Proprietary Enhancements. 234

23.4 Evaluating CORBASEC Implementations. 234
23.4.1 Adherence to relevant standards. 234
23.4.2 Support for Security-unaware Applications. 235
23.4.3 Pluggable Security Code. 235
23.4.4 Portability. 236
23.4.5 Interoperability. 236
23.4.6 Administration of Authentication & Authorization In-

formation . 236
23.4.7 Scalability and Fault Tolerance. 237
23.4.8 Integration with Enterprise Security Systems. 237
23.4.9 Single-Sign-On Support (SSO). 237
23.4.10 Key and Password Management. 238
23.4.11 Client-side Security Policies. 238
23.4.12 Securecorbaloc 238
23.4.13 Secured CORBA Services. 239
23.4.14 Firewall traversal. 239
23.4.15 Firewall Proxy Servers. 239
23.4.16 Bi-directional IIOP. 239

23.5 Final Comments. 240
23.6 Further Reading. 240

24 Services not Discussed in this Book 241
24.1 Persistent State Service (PSS). 241
24.2 Other CORBA Services and Domain Specifications. 243

viii

VI Final Issues 245

25 Portability of CORBA Applications 247
25.1 CORBA Portability Issues. 247

25.1.1 Makefile Issues. 248
25.1.2 Names of CORBA-related C++ Header Files. 248
25.1.3 Configuration and Logging APIs. 248
25.1.4 Implementation Repositories. 249
25.1.5 Multi-threaded Servers. 249

25.2 Non-CORBA Portability Issues with C++. 250
25.2.1 Cross-platform Portability. 252
25.2.2 Theiostream Library 252
25.2.3 Synchronization in C++ Applications. 253

26 Other CORBA Resources 255
26.1 Books and Articles. 255
26.2 The CORBA Utilities Package. 256
26.3 Internet Resources. 256
26.4 Consultancy and Training Courses. 257

Bibliography 259

ix x

Preface

Intended Audience

This book provides a detailed introduction to the concepts and terminology of
CORBA. It is aimed at people with a technical background who want to gain
a concrete understanding of theconceptsof CORBA without learning all the
low-level details. For example:

• A chief technology officer (CTO) might read this book in order to under-
stand the concepts of CORBA and so decide if it is suitable for the needs
of his or her organization.

• A project manager might read this book so he or she can engage devel-
opers in meaningful discussions about CORBA-related issues.

• If your organization outsources the development of a CORBA appli-
cation to another company then reading this book will help you when
discussing your applications’ specifications and requirements with your
supplier company.

• Developers who are starting to learn CORBA will appreciate the high-
level technical discussion of theconceptsof CORBA. A clear under-
standing of these concepts makes it much easier to understand the low-
level APIs that are the focus of most programmer-oriented documenta-
tion. Developers who already know some of the basic capabilities of
CORBA will find that this book gives them a concise overview of some
of the “advanced” capabilities of CORBA. As such, this book can pro-
vide guidance to developers with some CORBA experience on what they
can learn next to enhance their skills.

• System administrators who have to manage CORBA systems will find
their work much easier if they read this book to gain an understanding of

xi

what CORBA does and how it does it.

One thing that is deliberately missing from this book is code examples.
This is because this book doesnotprovide a programming tutorial for CORBA
developers. Readers interested in learning how to develop CORBA applica-
tions are advised to browsewww.amazon.com and pick a book that has good
customer reviews. Alternatively, look at Section26.1on page255for a list of
some of the author’s favorite CORBA books.

Although this book is not a tutorial on CORBA programming, it is a very
good complement to such tutorial books. In particular, by concisely explaining
the concepts of CORBA, this book provides readers with a firm foundation that
they can build upon by, afterwards, reading a CORBA programming book.

How to Read this Book

There is no need to read this book from start to finish. Instead, the informa-
tion in this book is arranged in chapters (most of which are quite short), and
each chapter is either self-contained or has cross-references to other chapters
if concepts in the chapter rely upon concepts discussed in other chapters. This
makes it possible for readers to jump around the book, reading only those chap-
ters that interest them. The only exception to this is that all readers should read
Chapter1, which explains the most fundamental concepts of CORBA.

About the Author

Ciaran McHale holds a Ph.D. and BA in Computer Science from Trinity Col-
lege, Dublin, Ireland. For the past 11 years he has been working in IONA Tech-
nologies, where he is a principal consultant. Aside from consulting with cus-
tomers, his job also involves the development and teaching of training courses.
He lives in Reading, England with his wife, Bianca. You can contact the author
through email atCiaran@CiaranMcHale.com.

About the Contributing Author

Donal Arundel wrote the chapter on Security (Chapter23) for this book. Donal
is a principal engineer for IONA Technologies, where he is the technical lead
for CORBA Security and has been developing distributed object technology
security solutions for the past seven years. Previously he worked for ICL,

xii

where he developed a secure smart-card-based Electronic Money System. He
holds a BSc. in Computer Applications from Dublin City University, Dublin,
Ireland.

Disclaimer

The authors have taken care in the preparation of this book, but make no ex-
press or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages
in connection with or arising out of the use of the information contained herein.
All opinions expressed in this book are solely those of the authors.

Acknowledgments

First, thank you to Marco Abbate in Vodafone Italy for his support when I
started to write this book.

Second, thank you to Donal Arundel for writing the chapter on security.
Third, thank you to the numerous people who have given me feedback on

draft versions of this book: Adrian Trenaman, Andres Ortiz, Arne Koschel,
Brian Kelly, Francis Byrne, Jan Schaefer, John McHugh, Klaus Hofmann zur
Linden, Neil Kenealy, Niall Donnelly,̈Orjan Petersson, Patrick Donnelly, Paul
Taylor, Raffaele Giugliano, Rebecca Bergersen and Richard Bonneau.

Fourth, thank you to others within IONA who have helped, in one way or
another, with this book: Klaus Hofmann zur Linden and Enda Brennan for their
encouragement; Sean Flavin for spiritual guidance; and Joe McCarthy, Fintan
Bolton and John O’Sullivan for miscellaneous advice and help.

Finally, In 2001 I fell head over heels in love with a wonderful woman, and
part-way through writing this book I proposed to her. Bianca, thank you for
turning my life upside down and for saying “Yes” when I asked you to marry
me.

xiii xiv

Part I

Introduction to CORBA

1

Chapter 1

Core Concepts and
Terminology

1.1 Object Management Group (OMG)

The Object Management Group (OMG) is a not-for-profit organization that
promotes the use of object-oriented technologies. Among other things, it de-
fines the CORBA and UML standards. The OMG web site (www.omg.org)
provides all of its standards documents available free-of-charge in the form of
downloadable PDF files. The OMG has a relatively small staff that focuses
on administrative tasks, such as maintaining the OMG web site and organizing
meetings of its members.

The work of defining standards is carried out by the members of the OMG,
of which there are about 600. Any organization (or individual) that is interested
in the work of the OMG can become a member. Member organizations typi-
cally include universities, software vendors and software users. Members can
volunteer to take part in task forces that have the goal of defining new OMG
standards or enhancing existing OMG standards. It is through this work that
the OMG standards evolve in directions directed by the real-world concerns of
its members.

1.2 CORBA

CORBA is an acronym forCommon ORB Architecture. The phrasecommon
architecturemeans atechnical standard, so CORBA is simply a technical stan-

3

4 CHAPTER 1. CORE CONCEPTS AND TERMINOLOGY

dard for something called an ORB.
ORB is an acronym forObject Request Broker, which is an object-oriented

version of an older technology calledRemote Procedure Call(RPC). An ORB
or RPC is a mechanism for invoking operations on an object (or calling a pro-
cedure) in a different (“remote”) process that may be running on the same, or a
different, computer. At a programming level, these “remote” calls look similar
to “local” calls.

Many people refer to CORBA asmiddlewareor integration software. This
is because CORBA is often used to get existing, stand-alone applications com-
municating with each other. A tag-line used by IONA Technologies,Making
Software Work Together™, sums up the purpose of CORBA.

Of course, CORBA is not the only middleware technology in existence.
Some other brand names of middleware include Java Remote Method Invoca-
tion (RMI), IBM MQ Series, Microsoft’s COM and .NET, SOAP, and TIBCO
Rendezvous. Scripting languages—such as UNIX shells, Perl, Python and
Tcl—can also be classified as middleware because scripts are often used to
connect programs together. A famous example of this is the pipe operator in
UNIX shells, as illustrated in the example below:

ls -l | grep ˆd

The pipe operator sends the output of the first command to the second com-
mand. Put simply, it helps two applications communicate with each other,
which is what middleware is all about.

One of CORBA’s strong points is that it isdistributedmiddleware. In par-
ticular, it allows applications to talk to each other even if the applications are:

• On different computers, for example, across a network.

• On different operating systems. CORBA products are available for many
operating systems, including Windows, UNIX, IBM mainframes and
embedded systems.

• On different CPU types, for example, Intel, SPARC, PowerPC, big-
endian or little-endian, and different word sizes, for example, 32-bit and
64-bit CPUs.

• Implemented with different programming languages, such as, C, C++,
Java, Smalltalk, Ada, COBOL, PL/I, LISP, Python and IDLScript1

1 IDLScript is a scripting language that was invented specifically for CORBA. The people
who invented IDLScript felt that CORBA would be best served by havingone officialscripting
language. Some other people felt that just as CORBA supported many “systems” languages (C,
C++, Java, Ada, COBOL and so on), so too it would be good for CORBA to support several
existing scripting languages (Perl, Python, Tcl, Visual Basic and so on) rather than inventing a
new scripting language specifically for CORBA.

1.3. CLIENT AND SERVER 5

CORBA is also anobject-oriented, distributed middleware. This means
that a client does not make calls to a server process. Instead, a CORBA client
makes calls toobjects(which happen to live in a server process).

1.3 Client and Server

In some computer technologies, the termsclientandserverhave a strict mean-
ing and an application is either one or the other. CORBA is not so strict. In
CORBA terminology, aserveris a process that containsobjects, and aclient
is a process that makes calls to objects. A CORBA application can be both a
client and a server at the same time.

1.4 Interface Definition Language (IDL)

An IDL file defines the publicapplication programming interface(API) that
is exposed by objects in a server application. Thetypeof a CORBA object is
called aninterface , which is similar in concept to a C++class or a Java
interface . IDL interfaces support multiple inheritance.

An example IDL file is shown in Figure1.1. An IDL interface may
contain operations and attributes. Many people mistakingly assume that an
attribute is similar in concept to an instance variable in C++ (afield in
Java). This is wrong. Anattribute is simply syntactic sugar for a pair of
get- and set-style operations. Anattribute can bereadonly , in which
case it maps to just a get-style operation.

The parameters of an operation have a specified direction, which can be
in (meaning that the parameter is passed from the client to the server),out
(the parameter is passed from the server back to the client) orinout (the pa-
rameter is passed in both directions). Operations can also have a return value.
An operation canraise (throw) an exception if something goes wrong. There
are over 30 predefined exception types, calledsystemexceptions, that all op-
erations can throw, although in practice system exceptions are raised by the
CORBA runtime system much more frequently than by application code. In
addition to the pre-defined system exceptions, new exception types can be de-
fined in an IDL file. These are calleduser-definedexceptions. Araises
clause on the signature of an operation specifies the user-defined exceptions
that it might throw.

Parameters to an operation (and the return value) can be one of the built-in
types—for example,string , boolean or long —or a “user-defined” type
that is declared in an IDL file. User-defined types can be any of the following:

6 CHAPTER 1. CORE CONCEPTS AND TERMINOLOGY

module Finance {
typedef sequence<string> StringSeq ;
struct AccountDetails {

string name;
StringSeq address;
long account number;
double current balance;

};
exception insufficientFunds { };
interface Account {

void deposit (in double amount);
void withdraw (in double amount)

raises(insufficientFunds);
readonly attribute AccountDetails details ;

};
};

Figure 1.1:Example IDL file

• A struct . This is similar to a C/C++struct or a Javaclass that
contains only public fields.

• A sequence . This is a collection type. It is like a one-dimensional
array that can grow or shrink.

• An array. The dimensions of an IDL array are specified in the IDL file,
so an array is of fixed size, that is, it cannot grow or shrink at runtime.
Arrays are rarely used in IDL. Thesequence type is more flexible and
so is more commonly used.

• A typedef . This defines a new name for an existing type. For example,
the statement below definesage that is represented as ashort :

typedef short age;

By default, IDL sequences and arrays areanonymous types, that is, they
do not have a name. A common, and very important, use oftypedef
is to associate a name with a sequence or array declaration. An example
of this can be seen in the definition ofStringSeq in Figure1.1.

• A union . This type can hold one of several values at runtime, for ex-
ample:

1.4. INTERFACE DEFINITION LANGUAGE (IDL) 7

union Foo switch(short) {
case 1: boolean boolVal;
case 2: long longVal;
case 3: string stringVal;

};

An instance ofFoo could hold aboolean , a long or a string .
The case label (called adiscriminant) indicates which value is currently
active. Constructs similar to an IDLunion can be found in many pro-
cedural languages. However, they are less widely used in object-oriented
languages because polymorphism usually fulfills the same purpose in a
more elegant manner.

• An enum is conceptually similar to a collection of constant integer dec-
larations. For example:

enum color { red, green, blue };
enum city { Dublin, London, Paris, Rome };

Internally, CORBA uses integer values to represent differentenum val-
ues. The benefit of usingenum declarations is that many programming
languages have built-in support for them (or something similar) and can
perform strong type checking so that programmers cannot, for example,
add acolor to acity .

• A fixed type holdsfixed-pointnumeric values, whereas thefloat
anddouble types holdfloating-pointnumeric values. Floating-point
arithmetic is suitable for many purposes, but may result in rounding er-
rors after a few decimal places. In contrast, fixed-point numeric values
may occupy more memory space than equivalent floating-point values,
but they have the virtue of avoiding rounding errors. Use of fixed-point
arithmetic tends to be restricted to niche application areas, such as fi-
nancial calculations and digital signal processing (DSP). Even if an ap-
plication uses fixed-point numbers, it is likely that the application will
use fixed-point arithmetic as an implementation detail and willnot ex-
pose the use of fixed-point numbers in its public IDL interface. For these
reasons, fixed-point types are rarely declared in IDL files.

• A valuetype . This is discussed in Section9.2on page96.

IDL types may be grouped into amodule . This construct has a similar
purpose to anamespace in C++ or apackage in Java, that is, it prepends

8 CHAPTER 1. CORE CONCEPTS AND TERMINOLOGY

a prefix on to the names of types in order to prevent namespace pollution. The
scoping operator in IDL is"::" . For example,Finance::Account is the
fully-scoped name of theAccount type defined in theFinance module.

1.4.1 The C++ Preprocessor

An IDL compiler uses a C++-compatible preprocessor to preprocess input IDL
files. The preprocessor removes C++-style comments and also processes direc-
tives that may be in IDL source files. An example of some of these directives
is illustrated in Figure1.2.

#ifndef FOO_IDL
#define FOO_IDL
#include "another-file.idl"
#pragma prefix "acme.com"
// This is a one-line comment
/ * This is a multi-line

comment

* /
module Foo {

...
};
#endif

Figure 1.2:ExampleFoo.idl file

It is common practice to have one module per IDL file and to name the IDL
after after the module that it contains. For example, a file calledFoo.idl
typically contains a module calledFoo.

The#include directive instructs the preprocessor to include the contents
of the specified file. This makes it feasible to spread IDL definitions over
several files in a modular manner rather than having to put all the definitions
required for a project in one monolithic file.

The#ifndef...#define...#endif construct shown in Figure1.2
is typically used to protect against the possibility that an IDL file might be
#include d multiple times.

A discussion of the#pragma prefix directive is deferred until Sec-
tion 9.4on page102.

1.4. INTERFACE DEFINITION LANGUAGE (IDL) 9

1.4.2 Common IDL Idioms

1.4.2.1 Factory Interfaces

Many object-oriented languages have aconstructorthat is used to create and
initialize an object. However, a constructor creates the objectlocally, that is,
within the address space of the process that calls the constructor. Because of
this, a constructor cannot be used to create an object in adifferentprocess, and
this is the reason why you cannot define a constructor for an IDL interface.

The way for a client process to create an object in a different (server)
process is for the client to invoke an operation on an existing object in the
server, and for that operation (in the server process) to create a new object. The
termfactory is typically used to refer to an object that can create other objects.
The operation that is used to create an object is often calledcreate() —or
has"create" embedded in its name, for example,create account()
—but that is just a naming convention rather than a requirement. No addi-
tional syntax is required to define factory interfaces or create-style operations.
Rather, these are defined using “normal” IDL syntax. An example of a factory
interface is shown in Figure1.3.

interface Foo {
void destroy ();
...

};
interface FooFactory {

Foo create (...);
...

};

Figure 1.3:Example of a factory interface

Just as an IDL interface does not have a constructor, neither does it have a
destructor. Sometimes, the decision about when to destroy an object is made
solely within a server, without any input from client applications. However,
if there is a need for clients to control the destruction of an object then this is
typically achieved by defining an operation that, when invoked, destroys the
object. This operation is usually calleddestroy() , but that is just a naming
convention rather than a requirement.

10 CHAPTER 1. CORE CONCEPTS AND TERMINOLOGY

1.4.2.2 Callback Interfaces

Callback procedures/objects are commonly used in GUI (graphical user inter-
face) toolkits: an application developer registers a procedure/object with the
GUI toolkit runtime and the runtime can “call back” to the procedure/object
whenever something relevant occurs, such as the mouse button is pressed or
a key on the keyboard is typed. Callback objects are occasionally used in
CORBA applications. As far as the IDL compiler is concerned, a callback
interface (such asFooCallback , defined in Figure1.4) is just a normal IDL
interface , so there is no special syntax required to define a callback inter-
face.

interface FooCallBack {
void notify something has happened (...);

};
interface FooCallbackRegistry {

void register callback (in FooCallback cb obj);
void unregister callback (in FooCallback cb obj);
...

};

Figure 1.4:Example of a callback interface

1.4.2.3 Iterator Interfaces

Let us assume that an IDL interface has aquery() operation that uses a
sequence to return query results. If the number of items in the returned
results could potentially be quite large then it is inadvisable to returnall the
results in one monolithic lump. There are several reasons for this:

• The entire collection of results might occupy several megabytes or even
gigabytes of memory. Even though the server process might run on a
machine with sufficient memory to hold this amount of data, perhaps
the client is running on a machine with far less memory. Returning this
amount of data to the client in one lump could cause the client to run out
of memory. It would be better to give the query results to the client in
several smaller chunks that will not exhaust the client’s memory.

• In many client-server applications that involve query-style operations,
the results of a query are displayed to an interactive user and the user
picks the one in which he or she is interested. If, as is frequently the case,

1.4. INTERFACE DEFINITION LANGUAGE (IDL) 11

the user happens to find the desired item near the start of the list then it is
a waste of both network bandwidth and memory to have transmittedall
the results from the server to the client. To avoid this wastage, it would
be better to give the query results to the client in several smaller chunks.
If the user picks an item in, say, the first or second chunk of results then
further results do not have to be transmitted from the server to the client.

struct Data { ... };
typedef sequence<Data> DataSeq ;
interface DataIterator {

DataSeq next n items (in unsigned long how_many);
void destroy ();

};
interface SearchEngine {

DataSeq query (
in string search_condition,
in unsigned long how_many,
out DataSeq results,
out DataIterator iter);

};

Figure 1.5:An Iterator interface

Figure1.5shows how an iterator interface is typically used.2 A query()
operation initially returns up tohow many items in theresults . If this
holdsall the items then theiter parameter is set to a nil object reference.
Otherwise, theiter parameter contains a reference to anDataIterator
object that can be used to obtain more results, againhow many at a time.
When the iterator has no more results to return,next n items() returns an
empty sequence and the client can thendestroy() the iterator.

1.4.3 Limitations of IDL

The complexity of data-types that can be defined in IDL is quite limited com-
pared to the complexity of data-types that can be defined in a programming
language. The limited flexibility of IDL data-types is due mainly to the lack
of pointers. For example, an IDLstruct cannot contain a pointer to another
IDL type. This lack of pointers makes it impossible to build arbitrary graph

2 Iterator is a term denoting an object that is used to “iterate over” (traverse) a collection of
items.

12 CHAPTER 1. CORE CONCEPTS AND TERMINOLOGY

structures in IDL. This limitation of IDL is deliberate and is due to a combina-
tion of several reasons:

• If IDL were to support pointers then it would make it difficult, or perhaps
impossible, to map IDL into programming languages that do not support
pointers.

• If IDL supported pointers then this would make it possible for program-
mers to pass arbitrarily complex types, such as cyclic graphs, as para-
meters to remote calls. This flexibility would be used rarely by pro-
grammers, so supporting it would greatly increase the complexity of the
marshaling engine in CORBA products for little benefit to users.

• IDL types are intended to be used tospecifya public API rather than
implementthe API. Public APIs normally pass relatively simple data-
types as parameters so the limitations of IDL are not usually a problem
in practice. Of course, it is still possible for a server to use pointers
within its private implementation.

It should be noted that the relatively recent addition ofobjects by value
(OBV) to IDL has finally provided IDL with some functionality similar to what
C++ pointers provide. However, as I discuss in Section9.2 on page96, OBV
has been a controversial addition to IDL.

Perhaps the most commonly-perceived limitation of IDL is that there is no
inheritance of exceptions, that is, one exception type cannot be defined as a
subtype of another exception type. Although this limitation is never a show-
stopper problem in projects, it certainly provides an irritation for developers.
This is because an IDL operation may wish to report, say, 10 different types of
exception, and it may be natural to arrange these into an inheritance hierarchy.
Because IDL does not allow inheritance of exceptions, the designer is typically
forced to either list 10 separate exceptions in theraises clause of the op-
eration or to define one “generic” exception that uses, say, anerror code
field to specify which category of error occurred. Both of these approaches can
be awkward for client-side developers to handle. With the first approach, they
may have 10 differentcatch clauses in atry-catch block surrounding an
operation call. With the second approach, there will be just onecatch clause
but this will need to use aswitch statement or a cascadingif-then-else
to determine the exact cause of failure.

1.4. INTERFACE DEFINITION LANGUAGE (IDL) 13

1.4.4 Mapping IDL to a Programming Language

As Section1.4 on page5 mentioned, IDL is used to define the public API
that is exposed by objects in a server application. IDL defines this API in a
way that isindependentof any particular programming language. However,
for CORBA to be useful, there must be a mapping from IDL to a particular
programming language. For example, the IDL-to-C++ mapping allows people
to develop CORBA applications in C++ and the IDL-to-Java mapping allows
people to develop CORBA applications in Java.

The CORBA standard currently defines mappings from IDL to the follow-
ing programming languages: C, C++, Java, Ada, Smalltalk, COBOL, PL/I,
LISP, Python and IDLScript. These officially-endorsed language mappings
provide source-code portability of applications across different CORBA prod-
ucts (portability is discussed in Chapter25). There areunofficial—or, if you
prefer,proprietary—mappings for a few other languages, such as Eiffel, Tcl
and Perl. Obviously, you could develop a CORBA application with an unoffi-
cial language mapping, but you would not have any guarantees of source-code
portability to other CORBA vendor products.

1.4.5 IDL Compilers

An IDL compiler translates IDL definitions (for example,struct , union ,
sequence and so on) into similar definitions in a programming language,
such as C++, Java, Ada or Cobol. In addition, for each IDLinterface , the
IDL compiler generates bothstub code—also calledproxy types(Section10.3
on page110)—andskeleton code. These terms are often confusing to people
for whom English is not their native language, so I explain them below:

• The wordstubhas several meanings. A dictionary definition ofstub is
“the short end remaining after something bigger has been used up, for ex-
ample, a pencil stub or a cigarette stub”. In traditional (non-distributed)
programming, astub procedureis a dummy implementation of a proce-
dure that is used to prevent “undefined label” errors at link time. In a dis-
tributed middleware system like CORBA, remote calls are implemented
by the client making a local call upon astubprocedure/object. The stub
uses an inter-process communication mechanism (such as TCP/IP sock-
ets) to transmit the request to a server process and receive back the reply.

• The termproxy is often used instead ofstub. A dictionary definition
of proxy is “a person authorized to act for another”. For example, if
you would like to vote on an issue but are unable to attend the meeting

14 CHAPTER 1. CORE CONCEPTS AND TERMINOLOGY

where the vote will be take place then you might instruct somebody else
to vote on your behalf. If you do this then you are “voting by proxy”.
The termproxyis very appropriate in CORBA (and other object-oriented
middleware systems). A CORBA proxy is simply a client-side object
that acts on behalf of the “real” object in a server process. When the
client application invokes an operation on a proxy, the proxy uses an
inter-process communication mechanism to transmit the request to the
“real” object in a server process; then the proxy waits to receive the reply
and passes back this reply to the application-level code in the client.

• The termskeleton coderefers to the server-side code for reading incom-
ing requests and dispatching them to application-level objects. The term
skeletonmay seem like a strange choice. However, use of the wordskele-
ton is not limited to discussions about bones; more generally, it means
a “supporting infrastructure”.Skeleton codeis so called because it pro-
vides supporting infrastructure that is required to implement server ap-
plications.

A CORBA product must provide an IDL compiler, but the CORBA speci-
fication does not state what is thenameof the compiler or what command-line
options it accepts. These details vary from one CORBA product to another.

1.5 Interoperable Object Reference (IOR)

An object referenceis the “contact details” that a client application uses to
communicate with a CORBA object. Some people refer to an object refer-
ence as aninteroperable object reference(IOR) or proxy. The interoperable
in interoperable object referencecomes about because an IOR works (or in-
teroperates) across different implementations of CORBA. This means that an
IOR for an object in, say, an Orbix server can be used by a client that is imple-
mented with a different CORBA product, such as Orbacus, Visibroker, TAO,
omniORB or JacORB. An in-depth discussion of object references is provided
in Chapter10.

1.6 CORBA Services

Many programming languages are equipped with a standardized library of
functions and/or classes that complement the core language. These standard-
ized libraries usually provide collection data-types (for example, linked lists,
sets, hash tables and so on), file input-output and other functionality that is

1.6. CORBA SERVICES 15

useful for the development of a wide variety of applications. If you asked a
developer to write an application in, say, Java, C or C++ butwithout making
use of that language’s standard library then the developer would find it very
difficult.

A similar situation exists for CORBA. The core part of CORBA (an object-
oriented RPC mechanism built with IDL and common on-the-wire protocols) is
of limited use by itself—in the same way that a programming language stripped
of its standardized library is of limited use. What greatly enhances the power
of CORBA is a standardized collection of services—calledCORBA Services—
that provide functionality useful for the development of a wide variety of dis-
tributed applications. The CORBA Services have APIs that are defined in IDL.
In effect, you can think of the CORBA Services as being like a standardized
class library. However, one point to note is that most CORBA Services are
provided as prebuilt server applications rather than as libraries that are linked
into your own application. Because of this, the CORBA Services are really a
distributed, standardized class library.

Some of the commonly-used CORBA Services are discussed in other chap-
ters of this book:

• The Naming Service (Chapter4) and Trading Service (Chapter20) allow
a server application to advertise its objects, thereby making it easy for
client applications to find the objects.

• Most CORBA applications usesynchronous, one-to-onecommunica-
tion. However, some applications requiremany-to-many, asynchronous
communication, or what many people callpublish and subscribecom-
munication. Various CORBA Services (Chapter22) have been defined
to support this type of communication.

• Many developers are familiar with the concept of database transactions.
In a distributed system, it is sometimes desirable for a transaction to span
severaldatabases so that when a transaction is committed, it is guaran-
teed that eitherall the databases are updated ornoneare updated. The
Object Transaction Service(OTS, discussed in Chapter21) provides this
capability.

16 CHAPTER 1. CORE CONCEPTS AND TERMINOLOGY

Chapter 2

Benefits of CORBA

Section1.2on page3 mentioned that CORBA is a type of middleware, but that
there are other types of middleware too. This naturally raises the question of
why you might wish to use CORBA instead of a different middleware technol-
ogy. The reason, as I discuss in this chapter, is that CORBA offers numerous
important benefits. You may findsomeof these benefits in other middleware
technologies, but you will be hard pressed to find another middleware technol-
ogy that offersall of these benefits.

2.1 Maturity

The original version of the CORBA standard was defined in 1991. This first
version of the specification was deliberately limited in scope. The OMG’s phi-
losophy was to define a small standard, let implementors gain experience and
then slowly expand the standard to incorporate more and more capabilities.
This “slow but sure” approach has been remarkably successful. In particular,
there have been few backwards-incompatible changes to the CORBA speci-
fication. Instead, new versions of the specification have tended to add new
functionality rather than modify existing functionality. Today, CORBA is ex-
tremely feature-rich, supporting numerous programming languages, operating
systems, and a diverse range of capabilities—such as transactions, security,
Naming and Trading services, messaging and publish-subscribe services—that
are essential for many enterprise-level applications. Many newer middleware
technologies claim to be superior to CORBA but actually have to do a lot of
“catching up” just to match some of the capabilities that CORBA has had for a
long time.

17

18 CHAPTER 2. BENEFITS OF CORBA

2.2 Open standard

CORBA is an open standard rather than a proprietary technology. This is im-
portant for a variety of reasons.

First, users can choose an implementation from a variety of CORBA ven-
dors (or choose one of the freeware implementations). You might think that
switching from one CORBA product to another would involve a lot of work.
However, the amount of work involved is likely to be much less than you might
think, particularly if you follow the practical advice in Chapter25about how to
increase the portability of CORBA-based applications. In contrast, if you use
a proprietary middleware system then switching to another proprietary middle-
ware vendor is much more challenging.

Second, the competition between different CORBA vendors helps to keep
software prices down.

Finally, many proprietary middleware technologies are designed with the
assumption that developers will buildall their applications using that particu-
lar middleware technology, and so they provide only limited support for in-
tegration with other technologies. In contrast, CORBA was designed with
the goal of making it easy to integrate with other technologies. Indeed, the
CORBA specification explicitly tackles integrations with TMN, SOAP, Mi-
crosoft’s (D)COM and DCE (a middleware standard that was popular before
CORBA). Furthermore, many parts of J2EE borrow heavily from concepts in
CORBA, which makes it relatively easy to integrate J2EE and CORBA. Some
vendors sell gateways between CORBA and J2EE that make such integration
even easier. Several CORBA vendors sell COM-to-CORBA and/or .NET-to-
CORBA gateways. This provides a very pragmatic solution to organizations
that wish to write GUI applications in, say, Visual Basic on Windows that act
as clients to server applications on a different type of computer, such as UNIX
or a mainframe. The Visual Basic GUI can be written as a COM/.NET client
that thinks it is talking to a COM/.NET server, but in fact communicates with
a gateway that forwards on requests to a CORBA server.

2.3 Wide platform support

CORBA implementations are available for a wide variety of computers, includ-
ing IBM OS/390 and Fujitsu GlobalServer mainframes, numerous variants of
UNIX (including Linux), Windows, AS/400, Open VMS, Apple’s OS X and
several embedded operating systems. There are very few other middleware
technologies that are available on such a wide range of computers.

2.4. WIDE LANGUAGE SUPPORT 19

2.4 Wide language support

CORBA defines standardized language mappings for a wide variety of pro-
gramming languages, such as C, C++, Java, Smalltalk, Ada, COBOL, PL/I,
LISP, Python and IDLScript. Some small organizations might use a single
programming language for all their projects, but as an organization increases
in size, it becomes increasingly likely that the organization will make use of
several programming languages. Likewise, the older an organization is, the
higher the likelihood becomes that some of its “legacy” (older) applications
are implemented in one programming language and newer applications are im-
plemented in a different programming language. For these organizational rea-
sons, it is important for a middleware system to support many programming
languages; unfortunately, not all middleware systems do so. One extreme case
of this is J2EE, which supports only Java. Another extreme case is the SOAP
middleware standard. SOAP applications can be built with a variety of pro-
gramming languages but, at the time of writing, the SOAP standard defines
only one language mapping (for Java). There may be several vendors who
support, say, C++ development of SOAP applications, but each of those ven-
dors provides their own proprietary C++ APIs. This means that there is no
source-code portability of non-Java SOAP applications across different vendor
products.

2.5 Efficiency

The on-the-wire protocol infrastructure of CORBA (discussed in Chapter11)
ensures that messages between clients and servers are transmitted in a compact
representation. Also, most CORBA implementationsmarshaldata (that is,
convert data from programming-language types into a binary buffer that can
be transmitted) efficiently. Many other middleware technologies also use a
similarly compact format for transmitting data and have efficient marshaling
infrastructure. However, there are some notable exceptions, as I now discuss.

SOAP uses XML to represent data that is to be transmitted. The verbosity
of XML results in SOAP usingmuch morenetwork bandwidth than CORBA.1

SOAP-based applications also incur considerable CPU overhead involved in

1 The relative verbosity of SOAP messages compared to CORBA messages depends on what
kind of data is transmitted. Because there is no “universal” data that is representative of all ap-
plications, it is impossible to give precise figures. However, many people would agree with the
claim that some SOAP messages can require about 5 or 10 times more bandwidth than equivalent
CORBA messages.

20 CHAPTER 2. BENEFITS OF CORBA

formatting programming-language types into XML format and later parsing
the XML to extract the embedded programming-languages types.

Some other middleware technologies, such as IBM MQ Series, transmit
only binary data, which is efficient. However, this requires that developers
write the marshaling code that copies programming-language types into the
binary buffers prior to transmission, and the unmarshaling code to extract the
programming-language types from a binary buffer. In contrast, a CORBA IDL
compiler generates the marshaling and unmarshaling code, so that developers
do not need to write (and maintain) such low-level code.

2.6 Scalability

The flexible, server-side infrastructure of CORBA (Chapter5) makes it feasible
to develop servers that can scale from handling a small number of objects up to
handling a virtually unlimited number of objects. Obviously, scalability varies
from one CORBA implementation to another but, time and time again, real-
world projects have demonstrated that a CORBA server can scale to handle
not just a huge amount of server-side data, but also high communication loads
from thousands of client applications. Most CORBA vendors will likely know
of customers who have tried a different middleware technology, found that it
could not scale sufficiently well and then switched to CORBA.

2.7 CORBA Success Stories

With such an impressive list of benefits as those discussed in this chapter, it
is little wonder that CORBA is being used successfully in many industries, in-
cluding aerospace, consulting, education, e-commerce, finance, government,
health-care, human resources, insurance, ISVs, manufacturing, military, petro-
chemical, publishing, real estate, research, retail, telecommunications, and util-
ities.

CORBA is used in everything from billing systems and multi-media news
delivery to airport runway illumination, aircraft radio control and the Hubble
space telescope. Most of the world’s telephone systems, as well as the truly
mission-critical systems operated by the worlds biggest banks, are built on
CORBA.

A discussion about real-world projects that have benefitted from the use
of CORBA is outside the scope of this book. However, many CORBA suc-
cess stories are available on various web sites. For example, you can find

2.7. CORBA SUCCESS STORIES 21

over 300 CORBA success stories onwww.corba.org . The web sites of
some CORBA vendors also contain more detailed success stories.

22 CHAPTER 2. BENEFITS OF CORBA

Part II

Application Development

23

Chapter 3

Development of CORBA
Applications

This chapter uses pseudocode to give a brief overview of the development of
a CORBA client-server application. The pseudocode is is somewhat similar to
C++ or Java, but the basic principles illustrated apply to CORBA development
with other languages. Pseudocode is used in order to focus on the principles
rather than getting sidetracked with the details of a particular language map-
ping.

3.1 Development of a Traditional Application

Figure3.1shows the structure of a traditional (that is, non-distributed), object-
oriented application. One of more types (such asAccount) are defined in
their own source code files. Then the mainline of the program (main.cpp)
creates one or more objects and invokes operations upon them.

3.2 Development of a CORBA Application

I now discuss what is required to write a distributed client-server application
(using CORBA) that has similar functionality to the traditional application of
Figure3.1.

25

26 CHAPTER 3. DEVELOPMENT OF CORBA APPLICATIONS

// File: Account.h
class Account {

void deposit (...) { ... }
... // instance variables

};
// File: main.cpp
main(...)
{

Account obj = new Account(...);
obj.deposit(...);

}

Figure 3.1:Structure of a Traditional Application

3.2.1 IDL Files and Generated Code

The first step in developing a CORBA application is to use IDL to define the
public APIs of object types. This is shown in Figure3.2. Notice that the IDL
definition ofAccount is broadly similar to, say, a C++ definition. There are
some minor syntactic differences, such as theclass keyword is replaced with
the interface keyword. However, a more important difference is that an
IDL file just declaresthe public API—it doesnot contain any implementation
details, such as the bodies of operations or instance variables.

// File: Account.idl
interface Account {

void deposit (...);
};

Figure 3.2:Account.idl

Once the IDL file has been written, the developer runs it through an IDL
compiler, for example:

idl Account.idl

Note that CORBA has not standardized on the names of IDL compilers or their
command-line options, so the exact command used varies from one CORBA
product to another. If you use a C++ CORBA product then the IDL compiler
generates files containing C++ data types that correspond to the types defined
in the input IDL file. Likewise, if you use, say, a Java or Cobol CORBA

3.2. DEVELOPMENT OF A CORBA APPLICATION 27

product then the IDL compiler generates files containing Java or Cobol data
types. Among the data types generated are aproxy classcalledAccount and
a skeleton-codeclass (Section1.4.5on page13) calledPOAAccount .1 The
pseudocode contents of these classes are shown in Figure3.3.

// Generated code
class Account {

void deposit (...)
{

marshal request details into a binary buffer
Send request buffer message to server
Wait to receive reply from server
if (reply buffer contains an exception) {

unmarshal exception and throw it
} else {

unmarshal "out" parameters from reply buffer
}

}
};
class POAAccount {

abstract void deposit (...);
void dispatch (...)
{

unmarshal "in" parameters from request buffer
try {

deposit(...);
marshal "out" parameters into reply buffer

} catch(...) {
marshal exception into reply buffer

}
Send reply buffer to client

}
};

Figure 3.3:Code generated by IDL compiler

A client makes a remote invocation by invoking upon a (local) proxy ob-
ject. The operations on the proxy objectmarshal(Section11.2on page113)
the details of the invocation—theobject key(Section5.6.1on page51) that

1 The name of the skeleton-code class varies from one language mapping to another. For exam-
ple, for an interface calledAccount , the C++ class isPOAAccount while the corresponding
class in Java is calledAccountPOA .

28 CHAPTER 3. DEVELOPMENT OF CORBA APPLICATIONS

uniquely identifies the target object in the server, the name of the operation
being invoked andin /inout parameters—into a binary buffer and the con-
tents of this buffer are transmitted to the server process that contains the target
object. Then the proxy waits to receive back a reply message from the server
and unmarshals theout /inout parameters and return value, if any, from the
reply buffer. Alternatively, if the reply buffer contains an exception then the
proxy unmarshals this and throws it.

The generated skeleton class (Figure3.3) contains an abstract operation
(a pure virtual member functionin C++ terminology) for each IDL operation.
This operation is not implemented in the skeleton class, but rather in a sub-class
that is written by a developer. The skeleton class also contains some dispatch
logic that unmarshals an incoming request, calls the appropriate operation—
deposit() in our example—with the unmarshaledin /inout parameters.
When this operation returns, the skeleton class then marshals theout /inout
parameters and return value, if any, (or an exception) into a reply buffer and
then transmits this back to the client application.

Developers do not need to know the low-level details ofhow proxies or
skeleton classes work—only that they are part of the infrastructure that is used
to delegate requests from a client application across a network to the “real”
object in a server process.

3.2.2 Servant Classes

CORBA uses the terminologyservantto mean an object in the host program-
ming language (for example, C++, Java or Cobol) that implements the func-
tionality of a CORBA object. In CORBA, a servant isnota CORBA object, but
a servant doesrepresenta CORBA object. A detailed discussion of this subtle
distinction between a servant and a CORBA object is deferred until Chapter5.

// File: AccountImpl.h
class AccountImpl inherits POA Account
{

void deposit (...) { ... }
... // instance variables

};

Figure 3.4:Servant class

The servant class isnot generated by the IDL compiler; instead, it is hand-
written by developers. Developers can use whatever name they want for this

3.2. DEVELOPMENT OF A CORBA APPLICATION 29

class, but a common naming scheme is for the servant class to be composed of
the name of the IDL interface combined with a suffix, such asImpl . For exam-
ple,AccountImpl might be the name of the servant class for theAccount
interface. Pseudocode for this servant class is shown in Figure3.4. The servant
class inherits from the generated skeleton class and must provide an implemen-
tation for all the IDL operations, such asdeposit() in our example.2 The
servant class may contain constructors, instance variables and extra (non-IDL)
operations to support the implementation of the IDL operations.

3.2.3 Server Mainline

Pseudocode for a server mainline is shown in Figure3.5. The most important
pieces of code are indicated inbold.

The ORBinit() function creates a newORBobject, which represents
the CORBA runtime system.3 This function is passed command-line argu-
ments (in C/C++ these are held inargc andargv). ORBinit() inspects
pairs of command-line arguments of the form-ORB<name> <value> and
interprets these name-value pairs as configuration values for the newly created
ORBobject. The recognized name-value pairs vary from one CORBA product
to another, but they are typically used to specify information such as the diag-
nostic level for the CORBA runtime system, the port on which a server process
should listen for incoming connections, or the name of a configuration file that
contains additional name-value pairs of configuration information.

When a CORBA program is terminating, it must callorb.destroy() .
This operation ensures that the CORBA runtime system is gracefully destruc-
ted before the program terminates.

If anything goes wrong when calling a CORBA API then an exception is
thrown. For this reason, atry-catch clause surrounds most of the code in
the main() function. This is to ensure that, even if an exception is thrown,
the application can callorb.destroy() .

Although Figure3.5shows just one servant being created, CORBA allows
a server process to create an arbitrary number of servants for an arbitrary num-
ber of IDL interfaces. When a server implements several IDL interfaces, the
server developer might want different servants to have differentqualities of
service(QoS). For example, if some servants are implemented in a thread-safe

2 Although this inheritance-based approach to implementing servants is common, it is not the
only mechanism available. CORBA also supports a delegation-based approach to implementing
servant classes, but a discussion of that is deferred until Section3.4.3on page34.

3 This function is calledORBinit() in most language mappings, but has the slightly different
name ofORB.init() in Java. TheORBinit() name is used in the pseudocode of this book.

30 CHAPTER 3. DEVELOPMENT OF CORBA APPLICATIONS

// File: server main.cpp
int main(int argc, char * argv[])
{

exit_status = 0;
orb = null;
try {

orb = CORBA:: ORB_init (argc, argv);
... // create POAs to contain servants
sv = new AccountImpl(...) ;
... // activate (insert) sv into a POA
exportObjRef(..., sv._this(), ...) ;
... // activate POA managers
orb.run() ;

} catch(CORBA::Exception & ex) {
cout << "Something went wrong: " << ex << endl;
exit_status = 1;

}
// Terminate gracefully
try {

if (orb != null) { orb.destroy() ; }
} catch(CORBA::Exception & ex) {

cout << "Something went wrong: " << ex << endl;
exit_status = 1;

}
return exit_status;

};

Figure 3.5:Pseudocode of server mainline

way then the CORBA runtime system in the server should allow concurrent
dispatching of incoming requests to those servants. Conversely, if some other
servants are implemented in a way that isnot thread-safe then the CORBA run-
time system should ensure that the dispatching of incoming requests to those
servants is serialized. The way that CORBA allows one QoS to be associated
with some servants and a different QoS to be associated with other servants
is by letting the server create several POAs. POAs are discussed in details in
Chapter5, but, in essence, a POA is acollectionof servants. The QoS of a POA
is specified when the POA is created. When a servant isactivated(inserted)
into a POA then the servant takes on the same QoS as its containing POA.

After callingORBinit() , the server typically creates one or more POAs
to contain servants. Then servants can be created and activated (inserted) into

3.3. CRITIQUE OF CORBA APPLICATION DEVELOPMENT 31

these POAs. It is common for a server to initially create just one or twofacto-
ries (Section1.4.2.1on page9) that can then be used to create more servants
later.

Section3.2.2briefly mentioned that a servantrepresentsa CORBA object.
The this() operation (which is defined in the generated skeleton class from
which servants inherit) can be invoked on a servant to obtain an object reference
for its corresponding CORBA object. A server program typically advertises
one or more of its objects by exporting their object references to, say, a file
(Section3.4.2 on page34), the Naming Service (Chapter4) or the Trading
Service (Chapter20). TheexportObjRef() function in Figure3.5 is not a
CORBA API; rather it is just a pseudocode placeholder to denote the exporting
of an object reference by some means.

When the server’s initialization is complete, it activates its POA managers
(a discussion of which is deferred until Section5.7on page56) and then calls
orb.run() to enter an event loop. In the event loop, the CORBA runtime
system accepts connections from clients, reads incoming requests and dis-
patches them to the skeletons associated with servants. Theorb.run() API
does not return untilorb.shutdown() is called. Theorb.shutdown()
operation is typically called from a signal handler or from the body of an IDL
operation with a name likeshutdown() or kill server() .

3.2.4 Client Mainline

Pseudocode for a client mainline is shown in Figure3.6. The most important
pieces of code are indicated inbold.

Just as in a server, a client callsORBinit() to initialize the CORBA
runtime system, and later callsorb.destroy() to ensure that the CORBA
runtime system is gracefully destructed before the program terminates.

The importObjRef() function in Figure3.6 is not a CORBA API;
rather it is just a pseudocode placeholder to denote the importing of an ob-
ject reference by some means, such as from a file (Section3.4.2on page34),
the Naming Service (Chapter4) or the Trading Service (Chapter20).

Once the client has a reference to an object in the server, the client can
invoke operations upon it.

3.3 Critique of CORBA Application Development

The pseudocode of a traditional application, shown in Figure3.1is much more
concise than the pseudocode of a corresponding CORBA application, shown

32 CHAPTER 3. DEVELOPMENT OF CORBA APPLICATIONS

// File: client main.cpp
int main(int argc, char * argv[])
{

exit_status = 0;
orb = null;
try {

orb = CORBA:: ORB_init (argc, argv);
obj = importObjRef(...) ;
obj.deposit() ;

} catch(CORBA::Exception & ex) {
cout << "Something went wrong: " << ex << endl;
exit_status = 1;

}
// Terminate gracefully
try {

if (orb != null) { orb.destroy() ; }
} catch(CORBA::Exception & ex) {

cout << "Something went wrong: " << ex << endl;
exit_status = 1;

}
return exit_status;

};

Figure 3.6:Pseudocode of client mainline

in Figures3.2, 3.4, 3.5and3.6. In fact, there are just 9 lines of pseudocode for
the traditional application, compared to 52 lines of pseudocode for the corre-
sponding CORBA application, which is almost a 5-fold increase in the num-
ber of lines of pseudocode. From such a comparison, it is easy to conclude
that “development of CORBA is 5 times more complex than development of
traditional applications”. However, such a conclusion is incorrect. This is be-
cause the additional steps required in a CORBA application—such as calling
ORBinit() and orb.destroy() , creating POAs, importing/exporting
object references and so on—are the same regardless of whether you write
a small CORBA application or a much larger one. When you write a real
CORBA application (as opposed to just pseudocode), the amount of CORBA
infrastructure code required is usually dwarfed by the amount of “business
logic” code.

3.4. MISCELLANEOUS NOTES 33

3.4 Miscellaneous Notes

3.4.1 resolve initial references()

As discussed in Section3.2.3, theORBinit() function creates a newORB
object, which represents the CORBA runtime system. One operation defined
on theORBtype isresolve initial references() . Some people find
the name of this operation to be unintuitive, but the name makes a lot of sense
if you know the following two pieces of information:

1. In CORBA terminology,resolvemeanslookupor find, so this operation
is used to “lookup” or “find” something.

2. This operation is slightly misnamed. It should actually have been called
resolve initial reference() (that is, “reference” instead of
“references”) because it is used to lookuponeitem each time it is called.

Theresolve initial references() operation is a bootstrapping API
that is used to find other parts of the CORBA infrastructure. It takes a string
parameter that indicates which piece of CORBA it should find. Many of the
CORBA Services (Section1.6) are found by calling this operation. For exam-
ple, you can obtain a reference to the Naming Service by calling this operation
with the parameter"NameService" . Likewise, you can obtain a reference
to the Notification Service by passing"NotificationService" as a pa-
rameter to this operation.4 In each case, the value returned by this operation is
an object reference of the base typeObject , and the programmer mustnar-
row (CORBA equivalent of atypecast) this to the appropriate type before using
it.

The resolve initial references() operation is used not only
to find CORBA Services; it is also used to obtain references to pieces of
infrastructure that are part of the same process. For example, it is used to
find Current objects (Chapter13), a factory to createDynAny objects (Sec-
tion 15.3), the root POA (Section5.5), and so on.

Theresolve initial references() operation is not shown in the
pseudocode of Figures3.5 or 3.6. However, real application code would use
resolve initial references() to access the root POA (which is re-
quired for creating other POAs in which to store servants) and to access, say,
the Naming Service or Trading Service for importing/exporting object refer-
ences.

4 The CORBA specification defines the parameter names that are used to find different CORBA
services.

34 CHAPTER 3. DEVELOPMENT OF CORBA APPLICATIONS

3.4.2 Stringified Object References

TheORBprovides an operation calledobject to string() that converts
an object reference (proxy) into a stringified object reference, and another op-
eration calledstring to object() that converts a stringified object ref-
erence back into a proxy. Theobject to string() operation works by
marshaling(Section11.2on page113) the IOR into a binary buffer, convert-
ing the contents of this buffer into hexadecimal and prefixing the result with
"IOR:" .

Theseobject to string() andstring to object() operations
provide one way for a server to advertise an object to client applications. For
example, a server could stringify an object reference and write this string to
a file. A client application could read this stringified IOR from the file and
call string to object() to convert it back into a proxy. Other ways for a
server to advertise objects are discussed in Chapters4 and20.

Many CORBA products provide a utility that can parse a stringified object
reference and print out the details embedded within it. Although such utilities
are common, they are not standardized by the OMG so the names and “look
and feel” of these utilities tends to vary between different CORBA products.
Here are the names of some of these utilities:

• The utilities provided with Orbix and Orbacus both happen to be called
iordump . However, these utilities were developed independently of
each other and they do not have the same “look and feel”.

• The omniORB and TAO utilities both happen to be calledcatior .
However, these utilities were developed independently of each other and
they do not have the same “look and feel”.

• The JacORB utility is calleddior , which is short for “decode IOR”.

• The web site below contains a form, into which you can copy-and-paste
a stringified IOR. When you then click on theparse button, it displays
the parsed information:

www.parc.xerox.com/istl/projects/ILU/parseIOR/

3.4.3 The Tie Approach to Implementing Servants

Section3.2.2on page28 mentioned that a servant class inherits from a gener-
ated skeleton class. Actually, CORBA supports two approaches for associating
a servant class with the skeleton class. One way is for the servant class to in-
herit from the skeleton class, as discussed in Section3.2.2. The other way is

3.4. MISCELLANEOUS NOTES 35

for the IDL compiler to generate a class—usually called atie class—that in-
herits from the skeleton class and this tie class thendelegatesto a servant class
(which, in this case, doesnot inherit from the skeleton class).

In languages (such as C++) that support multiple inheritance of classes,
the inheritance approach is usually preferred. In languages (such as Java) that
support only single inheritance of classes, the tie (delegation) approach is often
preferred since this allows the servant class to use its single inheritance for a
non-CORBA purpose. The tie approach is also useful if a servant’s state is to
be persisted in an object database. This is because the object database should
be used to persist the instance variables of just the servant class andnot persist
any instance variables inherited from CORBA infrastructure, such as a skeleton
class.

36 CHAPTER 3. DEVELOPMENT OF CORBA APPLICATIONS

Chapter 4

The Naming Service

One way for a server application to advertise an object is for the server to
stringify an object reference—by callingobject to string() —and write
it to, say, a file (Section3.4.2on page34). A client application could then read
in the string, and callstring to object() to turn it back into a proxy.
This mechanism works fineas long asthe client and server applications have
access to a shared file system. This is likely to be the case if the client and
server are running on the same computer or on the same local area network.
However, it is unlikely that a wide area network will have a shared file sys-
tem. For this reason, CORBA has matured over the years to support more
geographically-scalable ways for a server to advertise an object. One such
way, the Naming Service, is discussed in this chapter, and another way, the
Trading Service, is discussed in Chapter20.

4.1 Basic Concepts

The white pages telephone book provides a mapping from a person’s name to
their contact details (address and telephone number). Likewise, the CORBA
Naming Service provides a mapping from a (human-readable) name to an ob-
ject’s “contact details” (an IOR). However, that is where the analogy ends. The
names in a telephone book are arranged alphabetically, while the names in the
Naming Service are arranged as a hierarchy (similar to how the file system
in UNIX or Windows is arranged as a hierarchy).1 Each level in the Naming

1 Strictly speaking, the contents of the Naming Service are arranged in a graph that may contain
cycles, so comparing the Naming Service to the World Wide Web is more accurate than comparing

37

38 CHAPTER 4. THE NAMING SERVICE

Service hierarchy is called anaming context(while in a UNIX file system it is
called adirectoryand in Windows it is called afolder). A naming context is
itself a CORBA object (it is defined by theCosNaming::NamingContext
interface, as shown in Figure4.1). Because CORBA objects can be accessed
regardless of their location, this means that a Naming Service hierarchycould
be contained inside a single server processor the hierarchy could be spread
over multiple Naming Service server processes. The concept of linking sev-
eral Naming Service server processes in this way is calledfederation. Many
organizations do not make use of federation and instead use a monolithic Nam-
ing Service. However, some organizationsdomake use of a federated Naming
Service. This is typically done to delegate administration responsibilities. For
example, an organization might have a separate Naming Service process for
each department or branch and then use federation to link these separate Nam-
ing Services into one logical unit that is the “company-wide” Naming Service.

The functionality of the Naming Service is defined through the operations
of its IDL interfaces. There are some operations that can be used to create/
modify/delete a naming context hierarchy. There are other operations tobind
(that is, advertise) an IOR in the Naming Service with a specified name, and yet
other operations toresolve(that is, lookup) an IOR associated with a specified
name.

It is common for an implementation of the Naming Service to provide some
command-line utilities and/or a GUI tool that can be used to do administration
tasks on the Naming Service, such as create/modify/delete a naming context
hierarchy. Such administration functionality is implemented by invoking cor-
responding IDL operations on the Naming Service.

The CORBA specification for the Naming Service does not specify what
quality of serviceshould be offered by an implementation. Some implemen-
tations of the Naming Service hold the details of thename→IOR mappings in
memory, which has the drawback that such details are lost whenever the Nam-
ing Service is killed and restarted, but has the benefit of not requiring access to
persistent storage (which might be important in an embedded device). Other
implementations of the Naming Service persist thename→IOR mappings in a
file or database.

Most, possibly all, implementations of CORBA have a bundled implemen-
tation of the Naming Service, which means that you do not have to purchase
it separately. It is possible that the Naming Service bundled with the CORBA
product you are using might have a quality of service that is unsuitable for
your needs. If this is the case then you could discard that Naming Service and

it to a hierarchical file system. However, in practice, a Naming Service is usually organized in a
hierarchical manner.

4.1. BASIC CONCEPTS 39

#pragma prefix "omg.org"
module CosNaming {

typedef string Istring ;
struct NameComponent {

Istring id;
Istring kind;

};
typedef sequence<NameComponent> Name;
enum BindingType {nobject, ncontext };
struct Binding {

Name binding_name;
BindingType binding_type;

};
typedef sequence <Binding> BindingList ;

interface BindingIterator {
boolean next one (out Binding b);
boolean next n(in unsigned long how_many,

out BindingList bl);
void destroy ();

};

interface NamingContext {
void bind (in Name n, in Object obj) raises(...);
void rebind (in Name n, in Object obj) raises(...);
void bind context (in Name n, in NamingContext nc)

raises(...);
void rebind context (in Name n,

in NamingContext nc) raises(...);
Object resolve (in Name n) raises(...);
void unbind (in Name n) raises(...);
NamingContext new context ();
NamingContext bind new context (in Name n)

raises(...);
void destroy () raises(...);
void list (in unsigned long how_many,

out BindingList bl,
out BindingIterator bi);

};
... // interface NamingContextExt omitted for brevity

};

Figure 4.1:Naming Service IDL

40 CHAPTER 4. THE NAMING SERVICE

replace it with a Naming Service from a different vendor or even implement
the Naming Service yourself. However, in practice, you are likely to be con-
tent with the quality of service offered by the Naming Service bundled with
the CORBA product you decide to use. The ability to “rip out and replace” an
implementation of the Naming Service (or another CORBA Service) is men-
tioned to illustrate the flexibility of an open standard (such as CORBA) that
cleanly separates specification from implementation.

4.2 Imperfections in the IDL

Although the concepts in the Naming Service are simple, unfortunately the
OMG made a few poor choices when defining the IDL types. This has resulted
in confusion for some developers. Such confusion rapidly disappears when the
motivation for the design choices are explained. This section explains the poor
design choices with the aim of helping developers avoid unnecessary confu-
sion. Readers who will not be doing development might prefer to skip this
section.

The IDL types of the Naming Service are defined in theCosNaming mod-
ule. Within this module, theNamingContext interface defines the opera-
tions that can be performed on a naming context. An application can connect to
the root naming context of the Naming Service by passing"NameService"
as a parameter to theresolve initial references() operation (Sec-
tion 3.4.1on page33). The first piece of confusion likely to strike a program-
mer is that the parameter to this operation is"NameService" rather than
"NamingService" .

Most of the remaining confusion with the API of the Naming Service con-
cerns the format of hierarchical names within the Naming Service. In hind-
sight, the OMG should probably have chosen to represent a hierarchical name
as astring that uses"/" as a separator between naming contexts, for ex-
ample,"path/in/naming/service" . However, there were several per-
ceived problems with this:

• The OMG wanted the hierarchical names to be expressed in multi-byte
character strings rather than single-byte character strings. However, at
the time that the Naming Service was being defined, thewstring type
had not been introduced to IDL.

• Using"/" as a hierarchical separator would be familiar to people from a
UNIX background. However, hierarchical file systems in other operating
systems (for example, MS-DOS, VMS and MacOS) used different syn-

4.2. IMPERFECTIONS IN THE IDL 41

taxes for their hierarchical separator. There was no compelling reason to
arbitrarily choose one separator syntax over another.

• Many file systems have the concept of a filename being composed of a
root-nameand anextension. For example, in the filename"foo.txt" ,
the root-name is"foo" and the extension is"txt" , with "." separat-
ing the two. Some people felt that similar flexibility might be useful in a
hierarchical name in a Naming Service.

The OMG tried to resolve thestring/wstring dilemma by introduc-
ing the following definition:

typedef string Istring;

The intention was thatIstring 2 would be used in the Naming Service API
and whenwstring was later introduced to IDL then the definition could be
changed to:

typedef wstring Istring;

No doubt this seemed like a good idea at the time. However, it was fatally
flawed because this proposed future change in the definition ofIstring
would have been backwards incompatible. Because of this backwards incom-
patibility, the change in the definition was never made. The net effect is that
the IDL definitions for the Naming Service have a uselesstypedef definition,
which confuses some people.

To avoid hard-coding use of an arbitrary syntax (for example,"/") as a
hierarchical separator, the OMG decided that a hierarchical name should be
represented as asequence of components. In order to allow support for
foo.txt -style components in a name, the OMG decided that each component
should be astruct that contains two fields. The resulting definition of a
hierarchical name is shown below:

typedef string Istring ;
struct NameComponent {

Istring id ; // denotes the "foo" part of "foo.txt"
Istring kind ; // denotes the "txt" part of "foo.txt"

};
typedef sequence<NameComponent> Name;

The result is certainly flexible, but it is also over-engineered. Most people
do not need all this flexibility and become frustrated with the complexity that
it introduces to their applications. For example, consider an application that

2 The"I" in Istring stands forinternationalization.

42 CHAPTER 4. THE NAMING SERVICE

reads a string of the form"path/in/naming/service" from a runtime
configuration file. The developers of such an application have to write their
own function to convert the string into theCosNaming::Name format. One
problem is that it is a waste of time for numerous developers in different or-
ganizations around the world to re-invent the wheel in writing such a utility
function. Another problem is that each of these developers must choose what
hierarchical separator they want and the separator between theid andkind
fields of NameComponent. As it turns out, most developers choose to use
UNIX-style separators of"/" and"." .

#pragma prefix "omg.org"
module CosNaming {

...
interface NamingContextExt : NamingContext {

typedef string StringName;
StringName to string (in Name n) raises(...);
Name to name(in StringName sn) raises(...);
Object resolve_str (in StringName sn) raises(...);
...

};
};

Figure 4.2:Extract from theNamingContextExt interface

Hindsight is a wonderful thing, and a few years later the OMG decided to
simplify the complexity of hierarchical names by defining a new version of the
Naming Service. As I will discuss in Section9.3 on page100, IDL does not
have a versioning mechanism, so the simplified Naming Service was defined
by defining a sub-type that inherits fromNamingContext .3 An extract of
this new type can be seen in Figure4.2(only some of the operations are shown
and theraises clauses have been omitted for brevity). Theto string()
and to name() operations convert between theCosNaming::Name and
"path/in/naming/service" formats. As an extra convenience, clients
can callresolve str() to resolve (that is, lookup) an IOR from the Nam-
ing Service without having to convert"path/in/naming/service" into
CosNaming::Name format. However, there is no similar utility operation
defined for thebind() or rebind() operations that servers use to advertise

3 This new version of the Naming Service was defined at the same time as thecorbaloc
andcorbaname URLs (Chapter12). The combined result was termed theInteroperable Nam-
ing Servicebecausecorbaloc andcorbaname addressed some bootstrapping interoperability
issues.

4.3. PRACTICAL USAGE OF THE NAMING SERVICE 43

an IOR in the Naming Service.
The final area of potential confusion for developers is thelist() oper-

ation, which is illustrated in Figure4.1 on page39. An out parameter of
this operation provides anon-recursivelisting of the entries in a naming con-
text. Because the listing is non-recursive, thebinding name field of each
Binding should beof type NameComponent. The accidental use of type
Namemakes some developers mistakenly think that this operation provides a
recursive listing.

This section has discussed the imperfections of the Naming Service API.
These imperfections can cause confusion for new developers. However, once
developers are aware of these imperfections, use of the Naming Service is
straightforward. Certainly the imperfections of this API seem minor in com-
parison to imperfections in the APIs of some other (non-middleware) systems.

4.3 Practical Usage of the Naming Service

The Naming Service defines IDL operations that can be used to create, modify
and delete a hierarchy ofNamingContext s. However, performing Naming
Service maintenance by writing programs that invoke these operations is te-
dious. Virtually all implementations of the Naming Service provide command-
line utilities and/or a GUI “wrapper” around these IDL operations. These
command-line utilities and/or GUI programs provide a practical way to per-
form administration of a Naming Service. Note, however, that such utilities
are not part of the CORBA specification. Because of this, the utilities provided
will vary from one CORBA product to another.

Once administration issues have been addressed, the only remaining pro-
gramming aspects associated with the Naming Service are how a server appli-
cation canbind() , that is, export, an object reference to the Naming Service,
and how a client application canresolve() , that is, import, an object refer-
ence from the Naming Service. These are straightforward programming tasks.

The Importing and Exporting Object Referenceschapter of theCORBA
Utilities package [McH] discusses a freely available library (implemented in
C++ and Java) that provides utility functions calledimportObjRef() and
exportObjRef() . As their names suggest, these utility functions are for
importing and exporting object references. A pseudocode example of their
use is illustrated in Figure4.3. These functions take aninstructions
parameter that specifies how to import or export an object reference. An
instructions parameter that starts with"name service#" indicates
that the Naming Service should be used. The utility functions also support

44 CHAPTER 4. THE NAMING SERVICE

try {
instructions1 = "name_service#path/in/Naming/Service";
instructions2 = "file#/path/to/file.ior";
obj1 = importObjRef (orb, instructions1);
exportObjRef (orb, obj2, instructions2);

} catch(ImportExportException ex) {
cout << ex << endl;

}

Figure 4.3:importObjRef() andexportObjRef()

"file#<filename>" and"exec#<command>" for importing or export-
ing object references through files or by executing an external command. Ide-
ally, an application should not hardcode the value of theinstructions pa-
rameter, but rather should get it from a command-line option or a configuration
file. Doing this provides applications with a lot of flexibility in how they im-
port/export object references. Aside from the flexibility, these utility functions
provide a simpler API than that of the Naming Service.

Chapter 5

Concepts for Server-side
Programming

5.1 Object

A company is just aconcept(with supporting, legal documentation) rather than
a physical entity. For example, a building owned by the company isnot the
company. Likewise, an employee isnot the company (but he or she can repre-
sent the company). Just as a company is a concept rather than a physical entity,
so too, a CORBA object is just aconcept, rather than a physical entity.

5.2 Servant

An employeerepresents a company. For example, let us assume that a utility
company calledEasyGassupplies gas to your home. You might say to a friend,
“I talked to EasyGas yesterday to change my payment plan.” Technically, you
did not talk to EasyGas because EasyGas is a company—a legal concept—
and it is impossible to talk to a concept. What you actually did was talk to
an employee(a representative) of EasyGas. In the same way, a programmer
may say, “This CORBA client invokes upon a CORBA object in the billing
server.” Technically, a CORBA object is just a concept so there is no way to
invoke an operation upon it. Instead, the invocation is handled by aservant
thatrepresentsthe CORBA object.

A servant is simply a data-structure or object in the programming language
that is used to implement a server application. For example, a servant might be

45

46 CHAPTER 5. CONCEPTS FOR SERVER-SIDE PROGRAMMING

a C++ object or a Java object.

5.3 Why are Object and Servant Different Con-
cepts?

An obvious question is why does the CORBA specification make a distinction
between aCORBA objectand aservant(C++/Java object) that represents it?
The answer can be explained by the following analogy with a company and its
employees.

The lifetime of a company is independent of the lifetime of an individual
employee. For example, when you telephoned EasyGas yesterday, you might
have spoken to an employee called John. If John leaves EasyGas then when
you telephone EasyGas again tomorrow, you might talk to another employee,
say, Mary. In the same way, when a CORBA client makes an invocation upon
a CORBA object, the request might be handled by a particular servant (C++ or
Java object). If the server process is later killed then obviously the servant (C++
or Java object) will be destroyed. Then, if the server is restarted, anewservant
will be created to represent the same CORBA object. What all this means is
that a future invocation by the client application upon thesameCORBA object
may be handled by a different servant. In turn, this means that a CORBA object
can be “long lived”, that is, it can survive a stop-and-restart of a server process
(just as a company can survive the resignation of one employee and the hiring
of a new, replacement employee).

5.4 Object Adapters

An object adapter(OA) is the part of the CORBA runtime system that “adapts”
the concepts of a CORBA object to the realities of the host programming lan-
guage and server process. In practice, this means that the OA deals with low-
level issues, such as:

• Reading incoming requests from, say, a socket connection, unmarshaling
the request’s parameters and dispatching to the relevant operation on a
servant.

• Providing APIs that allow an object reference to be mapped to the corre-
sponding servant, and vice versa.

• On-demand creation of servants and the later saving of servant state to a
persistent store (for example, a file or a database).

5.5. PORTABLE OBJECT ADAPTER (POA) 47

The CORBA specification is deliberately vague about the capabilities of an
object adapter. This is because the OMG felt that it would not be feasible to
have a one-size-fits-all object adapter. Instead, the OMG expected that several
different object adapters would be developed. The first version of the CORBA
specification defined a Basic Object Adapter (BOA) and suggested that other
object adapters—perhaps a Database Object Adapter or a Real-time Object
Adapter—could be developed. Unfortunately, this goal was not achieved. The
reason for this is that the BOA was under-specified so CORBA vendorshad to
add their own proprietary enhancements just to get a working system. Having
done this, CORBA vendors decided tonot define new object adapters for, say,
database integration or to support real-time programming. Instead, they just
added more and more proprietary APIs to the BOA to provide the desired func-
tionality. The result was that each CORBA vendor had their own proprietary
version of the BOA, and this hindered source-code portability of applications
across different CORBA products.

After a few years, the OMG decided to discard the BOA and to replace it
with the Portable Object Adapter (POA). The POA is superior to the BOA in
two ways:

1. The POA has much more built-in functionality than the BOA. This dra-
matically reduces the need for CORBA vendors to add their own pro-
prietary enhancements. It also reduces the need for programmers touse
proprietary enhancements and hence increases source-code portability of
applications across different CORBA implementations.

2. The architecture of the POA provides an open-ended way for new func-
tionality to be added in the future. This provides a way for the OMG
to incrementally built upon the capabilities of the POA, in a backwards-
compatible way. It also allows CORBA vendors to provide proprietary
enhancements in a way that retains the “look and feel” of existing POA-
based APIs.

5.5 Portable Object Adapter (POA)

A POA is acollectionof servants. This is a collection in the same sense that
arrays, linked lists, hash tables and sets are collections. A POA is created with
certainpolicy (quality of service) values. The policy values associated with
a POA are applied to the servants contained within the POA. For example, a

48 CHAPTER 5. CONCEPTS FOR SERVER-SIDE PROGRAMMING

POA might be multi-threaded or single-threaded.1 If the POA is multi-threaded
then it can dispatch requests concurrently to the servants contained inside it.
Conversely, if a POA is single-threaded then it ensures that the dispatching of
requests is serialized for the servants that it contains.

A server can have several POAs. Because each POA can have different pol-
icy values—and the policy values are applied to the servants contained within
a POA—this means that you can apply different policy values to different (col-
lections of) servants. For example, if some servants are implemented in a
thread-safe manner then you could put them into a multi-threaded POA. Con-
versely, if some other servants arenot thread-safe then you could put them into
a single-threaded POA.

The CORBA specification does not place any restrictions on how many
POAs you may have in an application, or on how many servants may be within
one POA. For example, at one extreme, you could placeall your servants into
the same POA. At the other extreme, you could create a separate POA for
each servant. A good rule of thumb is to have a separate POA for each IDL
interface. This gives you the flexibility of choosing different policy values for
different IDL interfaces. Each POA can be given an arbitrary name. If you
have a separate POA for each IDL interface then a good convention is to use
the name of an IDL interface as the name of its associated POA.

5.5.1 POA Hierarchy

Within any type of hierarchical diagram, the lines connecting the nodes in the
hierarchy indicate a relationship. For example, in an organizational hierarchy
the lines indicate areports torelationship, while in an object-orientation type
hierarchy the lines indicate anis a relationship.

RootPOA

FooFactory BarFactory Administration

Foo Bar

Figure 5.1:Example POA hierarchy

All the POAs in a CORBA server are arranged in a hierarchy. The lines

1 Saying that a POA is multi-threaded or single-threaded is a slight simplification. This issue
is discussed in more detail in Chapter6.

5.5. PORTABLE OBJECT ADAPTER (POA) 49

within a POA hierarchy indicate anorder of destructionrelationship. For ex-
ample, consider the POA hierarchy in Figure5.1. The CORBA runtime system
provides a built-in POA called theroot POA.2 As its name suggests, this node
forms the root of the POA hierarchy. The order of destruction guarantee means
that, at server shutdown time, the POAs will be destroyed in the following
order:

• TheFoo POA will be destroyed before theFooFactoryPOA. Likewise,
Bar will be destroyed beforeBarFactory.

• TheFooFactory, BarFactoryandAdministrationPOAs will be destroyed
before theRootPOA.

No order of destruction guarantees are given for sibling nodes. For example,
the relative order of destruction of theFoo andBar POAs is not guaranteed.
Neither is the relative order of destruction guaranteed for theFooFactory, Bar-
Factoryor AdministrationPOAs.

The reason why the order of destruction is useful is that the programmer
can optionally arrange for the servants within a POA to be destroyed when the
containing POA is destroyed.3 In essence, a programmer can use the order of
destruction of the POA hierarchy to impose an order of destruction on servants.

POA hierarchies tend to be very shallow. There are two reasons for this.
First, most CORBA servers tend to implement a relatively small number of
IDL interfaces (typically less than 5). Since it is natural to have one POA for
each IDL interface, this means that there will be only a few POAs within a
server process. Second, CORBA server applications tend to have only simple
order-of-destruction requirements, and this is reflected in a very flat hierarchi-
cal structure.

2 The root POA is accessed by callingresolve initial references("RootPOA")
on the ORB and then “narrowing” down to the appropriate type (PortableServer::POA).
Theresolve initial references() operation is discussed in Section3.4.1on page33.

3 In some programming languages, for example, C++, servants are reference counted. In such
languages, the programmer can arrange for POAs to hold the only references to servants. Then as
each POA in the POA hierarchy is being destroyed, the POA decrements (to zero) the reference
count of all of its servants. This has the effect of destroying the servants at the same time as the
POA in which they are contained. An alternative technique—and one which works regardless of
whether or not servants are reference counted—is to use the “lazy loader” POA model (discussed
in Section5.6.2). When such a POA is being destroyed, it calls theetherealize() operation
on its ServantActivator (lazy loader) for each servant. The programmer can implement
etherealize() so it performs destruction-time behavior for servants.

50 CHAPTER 5. CONCEPTS FOR SERVER-SIDE PROGRAMMING

5.6 Different Kinds of POA

Section5.5mentioned that a POA is a collection of servants. In fact, a POA can
be one of several kinds of collection. This allows programmers to make var-
ious tradeoffs regarding the lifecycle of servants and the relationship between
servants and the CORBA objects that they represent. For example:

• Must a servant be createdbeforerequests arrive for the corresponding
CORBA object? Or can servants be created on an as-needed basis?

• Once a servant has been created, does it live indefinitely (until the server
process terminates)? Or can a servant be destroyed and later another
servant be created to take its place? If this latter approach is taken then it
could be used to implement a cache that contains servants for recently-
accessed CORBA objects.

• Is there a one-to-one mapping between servants and the CORBA objects
that they represent? Or could one servant be used to representmany
CORBA objects?

The possibilities listed above allow programmers to choose different tech-
niques in order to meet a wide variety of performance and scalability require-
ments.

Active Object Map (AOM)

 Object id 4

 Object id 1

 Object id 9

servant manager

default servant

 servant

ServantActivator

(lazy loader)

 ServantLocator
(cache)

 servant

 servant

 servant

Figure 5.2:Possible components of a POA

In order to provide these possibilities, a POA must be a flexible type of
container. Figure5.2 shows the logical structure of a POA. This figure illus-
trates that a POA may have: adefault servant, one of two subtypes ofservant

5.6. DIFFERENT KINDS OF POA 51

manager(either aServantActivator or a ServantLocator), and/or
anactive object map(AOM). The meaning of these components will be made
clear later. It is impossible for a POA to have all of these components at the
same time. Instead, a POA has at most two of them. Which components a POA
has determines the performance and scalability characteristics of the POA. The
following subsections discuss four common “kinds” of POA, where each kind
makes use of a certain combination of the components.

5.6.1 POA kind 1: “Simple”

The simplest kind of POA is one that has just an active object map. This
is illustrated in Figure5.3. The termactive object map(AOM) is not very
intuitive so it worthwhile explaining it. The termmapmeans a lookup table
that “maps” a name to a value. The termactive objectmeans a CORBA object
that is “active”, that is,currentlyhas a servant associated with it.

Active Object Map (AOM)

 Object id 4

 Object id 1

 Object id 9

servant manager

default servant

 servant

 servant

 servant

X

Figure 5.3:A “simple” POA

An IOR (Chapter10) contains the “contact details” that a client application
uses to communicate with a CORBA object. These contact details include the
host and port of the server process, and also anobject keythat uniquely iden-
tifies the target object within the server process—the object key information is
required because there may be many objects within the same server process.
The format of an object key varies from one CORBA product to another, but it
typically contains the following information:

• The hierarchical name of the POA that contains a servant for the CORBA
object.

52 CHAPTER 5. CONCEPTS FOR SERVER-SIDE PROGRAMMING

• An object idthat uniquely identifies a servant within the POA. The object
id is represented as arbitrary binary data,4 which allows developers to
store, say, theprimary keyof a database record in the object id. Doing
this provides a convenient way to put a CORBA object “wrapper” around
information in a database.

• If the POA has thePERSISTENTpolicy (discussed in Section6.1.3on
page62) and if the server is being deployed through an implementation
repository (IMR) then the object key may contain a name that uniquely
identifies the server to the IMR. The reason for this is discussed in Sec-
tion 7.2.2on page71.

• If the POA has theTRANSIENTpolicy (discussed in Section6.1.3on
page62) then the object key may contain a timestamp.

When a request arrives at a server, the header of the request contains the
object keyfor the target object. The CORBA runtime system in the server
extracts the POA name and theobject idinformation from the object key. The
CORBA runtime system uses thisobject id to perform a lookup in the AOM
of the specified POA. If there is a servant associated with this object id then
the request is dispatched to that servant. Otherwise, anOBJECTNOTEXIST
exception is thrown back to the client.

You can use a “simple” POA under the following conditions:

• You have enough memory to store all the servants in memory at the same
time. A well-designed CORBA product might have an overhead as low
as 30 bytes for each servant in a POA, but application-level instance vari-
ables might account for much more memory consumption. Typically, a
“simple” POA can be used for up to, say, 100 or 1000 servants. Memory
requirements mean that it is unlikely to scale up to one million servants.

• You can pre-create a servant for a CORBA objectbeforereceiving the
first request for that object.

5.6.2 POA kind 2: “Lazy Loader”

In this POA model (Figure5.4), the server programmer creates the POA and
then associates it with an object that implements theServantActivator
interface. The nameServantActivatoris not very intuitive; perhapslazy loader

4 Theobject idis asequence <octet >. An octet is the built-in IDL type that denotes a
byte of raw data.

5.6. DIFFERENT KINDS OF POA 53

would be a better name because its purpose is to lazily load (or “re-create on
demand”) servants. It is the programmer’s responsibility to implement the lazy
loader class.

Active Object Map (AOM)

 Object id 4

 Object id 1

 Object id 9

servant manager

default servant ServantActivator

(lazy loader)

 ServantLocator
(cache)

 servant

 servant

 servant

X

X

Figure 5.4:A “lazy loader” POA

When a request arrives at a server, the CORBA runtime extracts the POA
name and theobject idinformation from the object key. The CORBA runtime
system uses thisobject id to perform a lookup in the AOM of the specified
POA. If there is a servant associated with this object id then the request is
dispatched to that servant. Otherwise, the POA invokes theincarnate()
operation on the lazy loader to ask it to re-create the desired servant, and the
POA then adds this servant into its AOM. If the lazy loader is unable or unwill-
ing to re-create the servant then anOBJECTNOTEXIST exception is thrown
back to the client.

You can use a “lazy loader” POA under the following conditions:

• You have enough memory to store all the servants in memory at the same
time. A well-designed CORBA product might have an overhead as low
as 30 bytes for each servant in a POA, but application-level instance
variables might account for much more memory consumption. Typically,
a “lazy loader” POA can be used for up to, say, 100 or 1000 servants.
Memory requirements mean that it is unlikely to scale up to one million
servants.

• You donot want to pre-create a servant for a CORBA objectbeforere-
ceiving the first request for that object. Instead, you prefer to create the
servants on an “as needed” basis. You typically do this for one of two
reasons:

54 CHAPTER 5. CONCEPTS FOR SERVER-SIDE PROGRAMMING

1. Perhaps each servant takes several seconds to be initialized. If you
pre-created 10 or 20 such servants then the server application might
take a few minutes to complete its initialization. Instead of suffer-
ing this long start-up time, you might prefer for the server to start
up very quickly and then suffer a few seconds of delay each time a
servant is accessed for the first time.

2. A CORBA server may have many objects but it is likely that only
a few of them will be used during the server’s uptime. In such a
situation, creating the servants on an “as needed” basis helps to
conserve memory.

5.6.3 POA kind 3: “Cache”

In this POA model (Figure5.5), the server programmer creates the POA and
then associates it with an object that implements theServantLocator in-
terface. The nameServantLocatoris not very intuitive;cachewould be a better
name because its purpose is to implement a cache of servants. It is the program-
mer’s responsibility to implement the cache class.

Active Object Map (AOM)

servant manager

default servant ServantActivator

(lazy loader)

 ServantLocator
(cache)

X X

X
Figure 5.5:A “cache” POA

When a request arrives at a server, the CORBA runtime passes control to
the POA specified in the object key in the header of the request. The POA then
uses the following (pseudocode) algorithm to dispatch the request:

sv = cache.preinvoke(object_id,...);
sv.operation(...);
cache.postinvoke(..., sv, ...);

5.6. DIFFERENT KINDS OF POA 55

The POA doesnot maintain its own AOM. This is because it assumes that the
cache will implement its own AOM-like data-structure and there would be no
point in the POA replicating this effort.

You can use a “cache” POA if you have enough memory to storesome but
not all of the servants in memory at the same time. Typically, the CORBA
server will be front-ending a database. To optimize access to information in
the database, you decide to cache some of that database information in ser-
vants (memory). Of course, caching information in memory has associated
dangers. In particular, if you update the cached/in-memory information and do
not immediately flush this information to the database then you run two risks.
First, if another application accesses the database directly then it will see in-
formation that is different to what is in the servants. In other words, you can
have a cache inconsistency problem. Second, if your CORBA server is killed
before it has a chance to flush its cached information back to the database then
you will lose some data. However, the “cache” POA model works very well
with data in a read-only (reference) database.

5.6.4 POA kind 4: “Default Servant”

In this POA model (Figure5.6), the server programmer creates the POA and
then associates it with just one servant. This servant is called adefault ser-
vant. Whenever a request arrives forany CORBA object in that POA, the
POA dispatches the request to the default servant. The default servant calls the
get object id() operation on thePOACurrent(Chapter13) to find out
which CORBA object it is representing for the current request. Typically, the
servant will use this object identifier as, say, the primary key into a database
table.

The “default servant” POA model minimizes memory consumption be-
cause a single servant can be used to service requests for (literally) an infinite
number of CORBA objects.5 This minimal memory consumption comes at the
price of a time overhead because the default servant must use the object iden-
tifier (obtained from thePOACurrent) to access persistent dataeverytime an
operation is invoked. In other words, a default servant doesnotnormally cache
any data in memory for faster access.

5.6.5 Other POA kinds

The four kinds of POA discussed in Sections5.6.1to 5.6.4are the most com-
mon and useful POA models. You create a specific kind of POA by spec-

5 In non-CORBA terminology, a default servant is often called aflyweight object.

56 CHAPTER 5. CONCEPTS FOR SERVER-SIDE PROGRAMMING

Active Object Map (AOM)

servant manager

default servant

 servant

X

X
Figure 5.6:A “default servant” POA

ifying a corresponding combination of POApolicies as a parameter to the
create POA() operation.6 There are other legal combinations of POA poli-
cies that can result in other kinds of POA. However, these other kinds of POA
are not always useful. For example, a “default servant” POAmayalso have
an active object map. When a request arrives at such a POA, the following
happens:

• If there is an entry in the active object map for the target object identifier
then the request is dispatched to the corresponding servant .

• Otherwise, the request is dispatched to the POA’s default servant.

It is difficult to think of a non-contrived use for such a POA. Instead, it is usu-
ally clearer to split this POA into two POAs: a “default servant” POA (without
an activate object map) and a separate “simple” POA.

5.7 POA Managers

A water tap (orfaucetas it is called in some countries) is used for turning on
and off the flow of water. Conceptually, it has two states: “on” allows water to
flow, and “off” prevents water from flowing.

A POA manager is similar to a water tap except that, instead of controlling
the flow of water, it controls the flow of incoming requests. A POA manager
can be in one of four states:

6 POA policies are discussed in Chapter6.

5.7. POA MANAGERS 57

HOLDING This is an “off” state. Incoming requests are queued up.

DISCARDING This an an “off” state. Each incoming request is discarded and
aCORBA::TRANSIENTsystem exception is thrown back to the client.7

ACTIVE This is the “on” state. Incoming requests are dispatched normally to
servants.

INACTIVE This an an “off” state. This state is entered automatically when
the server is shutting down. Incoming requests are rejected in a vendor-
specific manner.

The namePOA manageris somewhat undescriptive. A better name might
have beenPOA request valve.

RootPOA

FooFactory BarFactory Administration

Foo Bar

Core functionality
 POA Manager

Administration POA Manager

incoming
requests

Figure 5.7:Example of POA managers

There is a one-to-many relationship between POA managers and POAs:
onePOA manager controls the dispatching of requests for all servants inmany
POAs. It is a good idea for a server application to have two POA managers, as
shown in Figure5.7. One POA manager controls the dispatching of requests
for servants in an “administration” POA and another POA manager controls
the dispatching of requests for servants in the “core functionality” POAs. In
this way, the server can selectively enable/disable its core functionality while
alwaysservicing “administration” requests.

7 A CORBA::TRANSIENTexception means “temporary error; please try again later’.

58 CHAPTER 5. CONCEPTS FOR SERVER-SIDE PROGRAMMING

module PortableServer {
...
local interface POAManager {

enum State {HOLDING, ACTIVE, DISCARDING,
INACTIVE };

State get state() ;
void activate() raises(...);
void hold requests (...) raises(...);
void discard requests (...) raises(...);
void deactivate (...) raises(...);

};
};

Figure 5.8:API for a POA manager

The API for POA managers is defined in IDL, as shown in Figure5.8.
You can query the current state of a POA manager by callingget state() .
You can switch a POA manager into another state by callingactivate() ,
hold requests() , discard requests() or deactivate() . Ini-
tially, a POA manager is in theHOLDINGstate. This is useful because it
prevents incoming requests from being dispatched while a server is perform-
ing its application-level initialization. Once initialization is complete, a server
program should callactivate() on all its POA managers and then go into
an event loop (typically by callingrun() on theORB).

Chapter 6

POA Policies

Section5.6on page50discussed several different kinds of POA, such as “sim-
ple”, “lazy loader”, “cache” and “default servant”. However, that section did
not explainhow to create a POA of a specific kind.How to create a POA of a
specific kind is the topic of this chapter.

CORBA uses the termpolicy to meanquality of service(QoS). A POA
is created by calling thecreate POA() operation. One of the parameters
to this operation is a sequence of policy objects. Section6.1 discusses the
different sub-types ofPolicy object that are available, and how some of them
combine together to create different kinds of POA. Finally, Section6.2briefly
outlines the APIs that are used to create a policy object.

6.1 Available POA Policies

Some of the POA policies determine what kind of POA is created; these poli-
cies are discussed in Section6.1.1. Some other POA policies are used to spec-
ify other QoS offered by the POA, and these are discussed in Sections6.1.2–
6.1.6.

6.1.1 Policies that Determine the POA’s Kind

A policy object is a “wrapper” around anenumvalue. In this section, I discuss
theenum values; a discussion of how to create object wrappers around these
values is deferred until Section6.2.

The following threeenum types, when combined together, determine a
POA’s kind:

59

60 CHAPTER 6. POA POLICIES

enum ServantRetentionPolicyValue {RETAIN, NON RETAIN};
enum IdUniquenessPolicyValue {UNIQUEID, MULTIPLE ID };
enum RequestProcessingPolicyValue

{USEACTIVE OBJECTMAPONLY,
USEDEFAULTSERVANT,
USESERVANTMANAGER};

The first enum determines whether or not object ids areretained in the
POA by an active object map (AOM). Many developers find theseenumvalues
difficult to remember. More meaningful names might have beenHASAN AOM
and DOESNOTHAVEAN AOMinstead ofRETAIN and NONRETAIN, re-
spectively.

The secondenum determines whether there is a one-to-one mapping (the
UNIQUEID value) or a many-to-one mapping (MULTIPLE ID) between ob-
ject ids and servants. TheMULTIPLE ID policy allows one servant to repre-
sent many CORBA objects. Youmustuse theMULTIPLE ID policy for the
“default servant” POA kind (Section5.6.4on page55). For the other kinds of
POA, you can use either policy, but theUNIQUEID policy is what is desired
most of the time.

The thirdenumdetermines whether the POA has an AOM, a default servant
and/or a servant manager:

• The USEACTIVE OBJECTMAPONLYpolicy value is used to obtain
the “simple” kind of POA (Section5.6.1on page51). You mustcom-
bine this policy withRETAIN. You typically also combine this with
UNIQUEID , but this is not required.

• The USEDEFAULTSERVANTpolicy value is used to obtain the “de-
fault servant” kind of POA (Section5.6.4on page55). You mustcom-
bine this policy withMULTIPLE ID . You typically also combine this
with NONRETAIN, but this is not required.

• If you combineUSESERVANTMANAGERwith RETAIN then you ob-
tain a “lazy loader” POA (Section5.6.2on page52). If, instead, you
combine it withNONRETAIN then you obtain a “cache” POA (Sec-
tion 5.6.3on page54). The USESERVANTMANAGERpolicy is also
typically combined withUNIQUEID , but this is not required.

6.1.2 Multi- and Single-threaded Policy Values

The followingenum is used to specify how a POA utilizes threads to dispatch
incoming requests:

6.1. AVAILABLE POA POLICIES 61

enum ThreadPolicyValue {ORBCTRL MODEL,
SINGLE THREADMODEL,
MAIN THREADMODEL};

These policy values are discussed in the following sub-subsections.

6.1.2.1 TheORBCTRL MODELPolicy Value

TheORBCTRL MODELpolicy specifies that the ORB runtime system has con-
trol over how incoming requests are dispatched. This policy value has very
under-specified semantics:

• Most CORBA products use multiple threads to dispatch requests with
this policy. However, the details of how the multiple requests are used
varies widely from one CORBA product to another. For example, a
CORBA product might: (1) use a pool of threads to dispatch incoming
requests; (2) use a thread-per-request model; (3) use a separate thread per
(socket) connection for dispatching requests; or (4) some other strategy.

• The MICO freeware implementation of CORBA was originally imple-
mented without multi-threading support. In MICO,ORBCTRL MODEL
used to employ a single-threaded dispatch algorithm, and this was con-
sidered to be a compliant implementation. Multi-threading support (and
a multi-threaded dispatch algorithm) has since been retrofitted to MICO.

The under-specified semantics ofORBCTRL MODELhinder the portability of
CORBA applications. Many people hope that the OMG will add better-defined
multi-threading policy values in the future.

6.1.2.2 TheSINGLE THREADMODELand MAIN THREADMODELPolicy
Values

You would think that theSINGLE THREADMODELpolicy would have obvi-
ous semantics. However, it is actually ambiguous:

• Some CORBA vendors interpreted this policy to mean that all incom-
ing requests are dispatched through the application’s main thread. With
this interpretation, there is serialization of request dispatch acrossall the
SINGLE THREADMODELPOAs within a process.

• Other CORBA vendors interpreted this policy to mean that there is con-
currencybetweenmultipleSINGLE THREADMODELPOAs, but serial-
izationwithin a POA.

62 CHAPTER 6. POA POLICIES

When the OMG became aware of this ambiguity, they resolved it by declaring
thatSINGLE THREADMODELhad the latter set of semantics, and they intro-
duced a newenum value, calledMAIN THREADMODELthat had the first set
of semantics.

Readers should note that some CORBA products that ascribed the “wrong”
semantics toSINGLE THREADMODELhave not yet added support for the
(newer)MAIN THREADMODELpolicy value. For this reason, it is important to
carefully read the documentation of a CORBA product to check what semantics
it provides forSINGLE THREADMODELPOAs.

6.1.3 Policy Values for Object Lifetimes and Naming

The followingenum types are used to specify the lifetimes of objects and how
they are assigned object ids:

enum LifespanPolicyValue {TRANSIENT, PERSISTENT};
enum IdAssignmentPolicyValue {USERID, SYSTEM ID };

CORBA uses the termtransientto meantemporary. Thus, theTRANSIENT
policy value specifies that object references (for objects within the POA) are
valid only for the duration of the server process. In other words, the object
references arenot valid if the server is killed and restarted. How a CORBA
product enforces this is an implementation detail, but it is typically done by
embedding a timestamp into IORs. The CORBA runtime system can use this
timestamp information to differentiate between references to objects that are
“similar” but have been created in different runs of a server process.

ThePERSISTENTpolicy value specifies that object references (for objects
within the POA) are valideven if the server is killed and restarted.

It is important to note that theTRANSIENTandPERSISTENTpolicies
determine the lifetimes of objectreferences. These policies donot determine
whetherdataassociated with an object is maintained in volatile RAM or in a
persistent store, such as a file or database. The following are typical examples
of how these policy values are used:

• Some CORBA objects, such asCustomer or Account , are associated
with records in a database. It makes sense that such objects are kept in
aPERSISTENTPOA, so that a client’s reference to such an object/data
will be valid if the server process dies and is restarted.

• Some objects in a server process—such as anadministrationor factory
object—are not associated with records in a database. However, these
“stateless” objects are also normally held in aPERSISTENTPOA. This

6.1. AVAILABLE POA POLICIES 63

ensures that a client’s reference to such an object will be valid if the
server process dies and is restarted.

• Some objects in a server process are intended to be temporary. One ex-
ample isCosNaming::BindingIterator in the Naming Service,
which is used to traverse over a collection of values. Another example
is aLoginSession object that holds details specific to a client that is
currently “logged in”. Although such objects are stateful, they typically
maintain their state in RAM, rather than in a database. Because of the
temporary nature of these objects, there is no requirement for a client
reference to such an object to remain valid if the server process dies and
is restarted. In fact, it is preferable for the object reference tonotbe valid
across restarts of the server. For this reason, such objects should be held
in aTRANSIENTPOA.

In CORBA terminology, programmers are referred to asusers. Hence, the
USERID policy value indicates that the programmer specifies the object id
whenactivating(inserting) a servant into a POA. In this case, the programmer
uses theactivate object with id() operation, as shown below:

poa.activate object with id(obj id, sv);

The SYSTEMID policy indicates that the CORBA runtime system picks a
unique object id when a servant is activated into a POA. In this case, the pro-
grammer uses theactivate object() operation, as shown below:

obj id = poa.activate object(sv);

Technically, theTRANSIENTandPERSISTENTpolicies are independent
of theUSERID andSYSTEMID policies. However,PERSISTENTis almost
always combined withUSERID , for the following reasons:

• If a programmer wishes to maintain the state of an object in a database
then he or she can use the primary key of a row in a database table as the
object id. This provides a very simple way to map between a CORBA
object and the corresponding data in the database.

• A stateless singleton—such as anadministrationor factory object—
should be in a POA with theUSERID policy so that the same object
id can be used for the object every time the server process starts. In this
way, a client’s reference to the object will be valid across restarts of the
server.

TheTRANSIENTpolicy is usually combined withSYSTEMID because pro-
grammers are rarely concerned with assigning meaningful names to temporary
objects.

64 CHAPTER 6. POA POLICIES

6.1.4 Transactional Object Policy Values

Some client-server systems require the ability for a database transaction to span
multipleoperation calls from a client to one server and/or the ability for a trans-
action to span multiple databases. Such client-server interactions require use
of the CORBA Object Transaction Service (OTS), which is discussed in Chap-
ter21.

A POA policy is used to indicate whether or not the objects within that
POA can take part in distributed transactions.1 The policy can have one of the
following values:

REQUIRESThis policy value indicates that all invocations on objects within
the POAmustbe part of a transaction.2

FORBIDS This policy value indicates that all invocations on objects within
the POA mustnot be part of a transaction.

ADAPTSThis policy value indicates that objects are sensitive to the presence
or absence of a transaction and can “adapt” to either style of invocation.

6.1.5 Implicit and Explicit Activation Policy Values

Most policy values used with POAs have some effect that either is visible
to clients or affects the high-level architecture of the server program. The
ImplicitActivationPolicyValue is different in that it controls a rel-
atively minor aspect of coding a server.

enum ImplicitActivationPolicyValue
{IMPLICIT ACTIVATION, NO IMPLICIT ACTIVATION};

To make a servant represent a CORBA object requires three steps:

1. You create a servant.

2. You activate (insert) the servant into a POA.

3. You call this() on the servant to obtain the object reference of the
CORBA object that it represents.

1 In the first version of OTS, an object could take part in a transaction only if the object’s
interface inherited from a particular base interface. This approach has been deprecated by the
OMG and a POA policy is now used instead.

2 Information in a service context (Section11.6) sent with a request indicates in which trans-
action, if any, the request is being executed.

6.2. CREATING POLICY OBJECTS AND POAS 65

If you use theNOIMPLICIT ACTIVATION policy then you must execute
all three steps. However, if you use theIMPLICIT ACTIVATION policy then
you can optionally omit step 2 because step 3 will implicitly activate the servant
if it is not already activated. So the benefit ofIMPLICIT ACTIVATION is
that can optimize away one line of code associated with the creation of CORBA
objects. This is a relatively minor benefit, and many people have religious feel-
ings over whether theIMPLICIT ACTIVATION policy is a good policy or
one to be avoided. On the one hand, some people like being able to optimize
away a line of code in several places within a server application. On the the
hand, the steeper learning curve associated with yet-another policy value ar-
guably outweighs this benefit.

Note that if you useIMPLICIT ACTIVATION then youmustcombine it
with SYSTEMID .

6.1.6 Proprietary Policy Values

The preceding subsections have discussed CORBA-compliant policy values
that can be used when creating POAs. A CORBA product is allowed to define
additional, proprietary policies. Some CORBA products do this in order to give
programmers greater control over choosing the QoS offered by objects. You
have to consult the documentation of a particular CORBA product to find out
what, if any, proprietary policies it provides.

6.2 Creating Policy Objects and POAs

Policy objects were first introduced with the POA specification. The POA
specification initially defined 7 types of policy and defined a separate operation
for creating each of these 7 kinds of policy object. For example, you can create
a ThreadPolicy object by invoking the following operation on an existing
POA:

ThreadPolicy create thread policy(
in ThreadPolicyValue value);

The parameter to this operation is anenum value, and the operation creates a
(subtype of) policy “wrapper” around it.

Having defined the POA specification, the OMG then realized that the con-
cept of policy objects could be applied to other parts of CORBA too. However,
having to add a new create-style operation to an existing interface for each
new type of policy would create a versioning problem. Because of this, the
OMG decided to define a “generic” API that could be used to create any kind

66 CHAPTER 6. POA POLICIES

of policy object. The work on defining this generic API was performed as part
of CORBA Messaging (Chapter16). Creation of transactional policy values
(Section6.1.4) is performed using this newer, generic API.

Overall, the CORBA APIs for creating POA policy objects and then using
these to create POAs are quite verbose. TheCreation of POA Hierarchies
Made Simplechapter of theCORBA Utilitiespackage [McH] discusses a utility
class (available in C++ and Java) that dramatically reduces the amount of code
required to create POAs.

Part III

Application Deployment

67

Chapter 7

Implementation Repository
(IMR)

7.1 Introduction

The CORBA specification briefly describes the concept of animplementation
repository(IMR). This term is not very intuitive so it can benefit from an ex-
planation.Implementationis the CORBA terminology for “server application”,
andrepositorymeans a persistent storage area, such as a database or a file. This
suggests that animplementation repositoryis a database/file that stores infor-
mation about CORBA server applications. This isalmostcorrect. An IMR usu-
ally also contains a CORBA server “wrapper” around the database/file, which
makes it possible for CORBA applications to communicate with an IMR.

An IMR typically maintains the following information about each server
application:

• A logical name that uniquely identifies a server, for example, “BankSrv”
or “StockControlSrv”.

• A command that the IMR can execute to (re)start the server process.

• Status information that indicates whether or not the server is currently
running; if the server is currently running then the IMR also records the
host and port on which the server process listens.

The CORBA specification provides only apartial definitionof an IMR. In
particular, CORBA states the high-level functionality that an IMR should pro-
vide, but doesnot state how this functionality should be implemented. Neither

69

70 CHAPTER 7. IMPLEMENTATION REPOSITORY (IMR)

does the specification state how the IMR should be administered. The need for
a partial specification is because much of the functionality of an IMR must be
implemented and administered in a platform-specific manner. For example:

• An IMR should be capable of starting and stopping a server process.
Different operating systems have different ways of starting and stopping
processes.

• An IMR should record details of servers—such as the command used
to launch a server—and whether or not the server is currently running.
Some IMRs may store this information in a database. Other IMRs might
record this information in a textual file. An IMR running on an embed-
ded device might not have access to a file system or a database and hence
might record server details in non-volatile RAM.

An IMR running on a mainframe would not only beimplementeddifferently
to an IMR running on a PC or an embedded device, it would also beadminis-
tereddifferently. Put simply, one CORBA vendor’s IMR running on one kind
of computer might have a very different “look and feel” to another CORBA
vendor’s IMR running on a different kind of computer. This wide variation in
IMRs is the reason why the CORBA specification contains only a high-level
discussion about IMRs.

Section7.2 illustrates the principles of an IMR through an example that is
based on a hypothetical CORBA implementation. Then Section7.3 outlines
the IMRs of three different CORBA products. In this way, I illustrate how
some of the details of an IMR vary from one product to another but the basic
principles remain the same.

7.2 IMR Concepts

7.2.1 Registering a Server with the IMR

An IMR is typically implemented as a CORBA server “wrapper” around a
database/file that persistently stores details of servers that have been registered
with the IMR. CORBA products usually provide a command-line utility that
can be used to register a server application with the IMR. Such a utility might
be used as shown below (the" \" character indicates a line continuation):

reg_srv_with_imr BankSrv \
-launch "/bin/bank_srv -ORBServerId BankSrv ..."

This utility takes details of a server application—such as a name (“BankSrv”
in the above example) and its launch command—and somehow communicates

7.2. IMR CONCEPTS 71

this information to the IMR, which then persists the information in its database,
as shown in Figure7.1. Communication between thereg srv with imr
utility and the IMR is typically achieved by having this utility act as a CORBA
client to the IMR. The IMR server process typically listens on a fixed port
(shown as port 4000 in Figure7.1). However, as mentioned in Section7.1,
the implementation details of the IMR are not standardized by CORBA, so the
name of thereg srv with imr utility, its command-line options, and how it
communicates with the IMR vary from one CORBA product to another. Some
CORBA products may provide a GUI administration program for registering
servers instead of command-line utilities.

IMR
DB

port 4000

IMR daemon

reg_srv_with_imr
reg_server(...)

update

Figure 7.1:Registering a server with the IMR

The launch command specified byreg srv with imr contains a pair of
-ORBServerId <name> command-line arguments. Later, when the IMR
launches the server, this pair of command-line arguments will be inspected
by the server’s call toORBinit() (Section3.2.3on page29) and this in-
structs the server process that it should identify itself to the IMR with the
specified name. Note that the latest CORBA specification (3.0) defines the
-ORBServerId <name> command-line option. Products that implement
an older version of the CORBA specification might use a different command-
line option to specify a unique name that identifies a server to the IMR.

7.2.2 Manually Running a Server

Having registered the server with the IMR, you can now run the server manu-
ally, for example:

/bin/bank_srv -ORBServerId BankSrv ...

Note that when you run the server manually, you use the-ORBServerId
BankSrv command-line option that was specified in the launch command
when previously registering the server with the IMR. Figure7.2illustrates what
happens when the server runs.

72 CHAPTER 7. IMPLEMENTATION REPOSITORY (IMR)

IMR
DB

IOR

well-known location

port 4000

IMR daemon

BankSrv

random port

1
. serv

er o
n

 <
p

o
rt>

obj

2. export

1a. update

Figure 7.2:IMR interaction with manually launched server

By default, the server listens on any available port, which is often called a
randomport.1 One of the CORBA APIs that is invoked during initialization of
a server—typicallyORBinit() or create POA()—informs the IMR that
the server specified by the-ORBServerId command-line option is running
and on which port it is listening (step 1). The IMR updates its database with
the supplied details (step 1a). This communication between the server and the
IMR is an implementation detail of one of the CORBA APIs that is invoked
during server initialization. This means that the server-IMR communication is
transparent to server developers.

1 Most/all CORBA products have a proprietary command-line option or entry in a configuration
file that can be used to instruct a server process to listen on a specific port. However, the discussion
in this chapter assumes that the server listens on a random port. A discussion about different ways
to deploy CORBA servers can be found in Chapter8.

7.2. IMR CONCEPTS 73

An IMR somehowdetermines when a server terminates—so that the IMR
can then record in its database the fact that the server is no longer running.
CORBA has not standardized on the technique used by the IMR to determine
when a server has terminated, but I briefly mention some of the techniques
used by CORBA products. Some products have an undocumented object in the
CORBA runtime system of servers and the IMR sends periodic “ping” mes-
sages to this to check if the server is still alive. Some other CORBA prod-
ucts open a socket/pipe connection between the IMR and a server; when the
server terminates, the operating system automatically informs the IMR that the
socket/pipe is being closed.

As part of a server’s initialization, it is likely that the server will export an
object reference (step 2) to a well-known location. Indeed, client applications
will use an object reference to communicate with a server, so it is important
to manually run a server once (so that it can export an object reference) before
clients try to communicate with the server. The means by which the server
exports the object reference—for example, to a file (Section3.4.2on page34),
the Naming Service (Chapter4) or the Trading Service (Chapter20)—are ir-
relevant to the present discussion.

An object reference (Chapter10) contains the “contact details” for an ob-
ject. When a server is deployed through an IMR then its exported (persistent)
IORs specify how the object can be contacted through the IMR.2 In particular,
the (host, port, object-key) information within the IOR might be as follows:

host: <IMR’s host>
port: 4000 (that is, the IMR’s port)
object key: “BankSrv”, <poa name>, <object id>

Theobject keyin an IOR uniquely identifies an object within a server process.
Within a server process, objects are grouped into collections called POAs (Sec-
tion5.5on page47), and one server may contain several POAs. Because of this,
the object key contains the name of the POA in which the object resides, and
also theobject idthat uniquely identifies the object within its POA. What sur-
prises some people is that (in many CORBA products) the object key within an
IOR contains the logical server name, for example “BankSrv”. The reason for
this is that (as shall be discussed in the next subsection) the IMR needs be able
to examine the object key and determine in which server the object resides, so
the IMR can redirect client requests to the appropriate server. Embedding the
server’s name inside the object key information of an IOR is the most obvious

2 This discussion is applicable only to references for persistent objects. The distinction between
persistentandtransientobjects is discussed in Sections6.1.3and8.2.2.

74 CHAPTER 7. IMPLEMENTATION REPOSITORY (IMR)

way to link the object key to the corresponding server.3 If (something akin to)
the server name wasnot present in the object key then the IMR would know
only to which POA an object belonged. In such a case, for the IMR to have the
ability to redirect a client’s request to the appropriate server would require that
every persistent POA in every server be registered with the IMR, which would
be a slight administrative burden. More importantly, it would make it impossi-
ble for several server applications that happened to have similarly-named POAs
to be deployed through the same IMR, because there would be no way for the
IMR to determine to which server an object belongs.4

7.2.3 Client Interaction with a Server and the IMR

Figure7.3 shows what occurs when a client establishes communication with
an object in a server. The client imports an IOR (step 1) from a well-known
location. The first time the client tries to make a remote call to the object, it
opens a socket connection to the host and port specified in the IOR. In our
example, the host and port happen to be those for the server’s IMR rather than
for the server itself, but the client process is not aware of this. The client sends
its request (step 2). In the header of each request is theobject keyinformation
from the IOR. When the IMR receives the request, it realizes that the object
key does not match one of its own objects so, the IMR extracts the server name
(“BankSrv”) from the object key and uses this to query its database (step 2a)
for details of the server.

• If the database details indicate that the server is already running then the
IMR obtains the server’s host and port from the database, constructs a
new IOR based on the (host, port, object key) details, and sends back a
redirection message to the client that contains this new IOR (step 3).

• If the database details indicate that the server isnot currently running
then the IMR obtains the server’s launch command from the database

3 Variations on this scheme exist. For example, Orbix 6 does not embed a server name in an
object key. However, a prefix (specified in a configuration file) may be attached to the name of a
POA, and this prefix is embedded in the object key. Many people set the prefix to be the server’s
name, so the effect is as if the server’s name was embedded in the object key.

4 The CORBA specification explicitly requires a CORBA implementation to ensure that there
is no namespace pollution of POA names across different server applications. Despite this, at least
one implementation of CORBA neglects to embed a server name into object keys of persistent
objects. This causes a scalability problem in the IMRs of such CORBA products, as it is not
possible for a single IMR to deploy several servers that have similarly-named POAs. If you intend
to deploy several servers through one IMR then check that your CORBA vendor’s product does
not suffer from this problem.

7.2. IMR CONCEPTS 75

and uses this to (re)start the server (step 2b). The IMR then waits for the
server to initialize itself and notify the IMR of its (probably random) port
(step 2c). The IMR then updates its database with the server’s “currently
running” status and port number. It then constructs a new IOR based on
the (host, port, object key) details, and sends back a redirection message
to the client that contains this new IOR (step 3).

The redirection message (Section11.4on page117) tells the CORBA runtime
system in the client “The object you are looking for is not at this location,
but here is a new IOR that tells you how to contact the object”. The CORBA
runtime system in the client then opens a new socket connection to the host and
port specified in the “redirection IOR” and resends its request (step 4). This
“resend” logic is handled by the CORBA runtime system in the client—it is
transparent to the application-level code in the client.

IMR
DB

client

IOR

well-known location

port 4000

IMR daemon

2a. query

2
b

. lau
n

ch

BankSrv

random port

2
c serv

er o
n

 <
p

o
rt>

obj

IOR

1
. im

p
o
rt

3. re
direction

2. op(...)

4. op(...)

2d. update

Figure 7.3:IMR interaction with client and automatically launched server

76 CHAPTER 7. IMPLEMENTATION REPOSITORY (IMR)

There are a few important points to note about the client initially talking to
the IMR and then being redirected to the “real” server:

• The redirection occurs for just thefirst invocationfrom the client to an
object. Subsequent requests from the client go directly to the “real”
server. Because of this, any overheads associated with the redirection
mechanism occur only during the initial connection establishment. Even
for this redirection during the connection establishment, there is an op-
timization used in many CORBA products that avoids retransmission of
large messages (Section11.4on page117).

• The redirection mechanism means that CORBA servers donothave to be
pre-started. Instead, servers that have been registered with an IMR can
be started on an “as needed” basis by the IMR. Also, only the IMR needs
to listen on a fixed port (which is usually specified in a configuration
file)—servers that are deployed through the IMR can listen on random
ports, which is often convenient.

• The redirection mechanism is defined as part of the CORBA specifi-
cation. Because of this, use of an IMR does not affect interoperabil-
ity between a client built with one CORBA product and a server built
with a different CORBA product. However, the means of interaction
between the server and its IMR varies from one CORBA product to an-
other. A practical effect of this is that an Orbix IMR can launch only
Orbix servers, a TAO IMR can launch only TAO servers and so on.

• Let us assume that a client is redirected via the IMR to the server and
that the client successfully makes several invocations upon the object in
the server. If the server later terminates, thus causing the client to lose its
connection to the server, then the CORBA runtime system in the client
will automatically revert to using the host and port in the original IOR.
This means that the client will send its next request to the IMR, which
gives the IMR a chance to restart the server and redirect the client to the
newly relaunched server.

• Some CORBA products allow you to register areplicated serverwith the
IMR. For example, there might be 5 servers that all share the same logi-
cal server name of “BankSrv”. In such a CORBA product, the IMR could
redirect some clients to one server replica, some more clients to another
server replica and so on. This provides a per-client load-balancing mech-
anism, without the need for developers to explicitly add load-balancing
logic to their applications. However, if you have a replicated server then

7.2. IMR CONCEPTS 77

it is your responsibility to ensure that the replicas do not suffer from
cache inconsistency problems.

• It is possible to deploy a serverwithoutan IMR. In this case, an exported
IOR contains the host and port of the server, so the client isnot redirected
through the IMR.

An IMR launches a server process by using operating system APIs to create
a new process—for example,CreateProcess() on Windows orfork()
andexec() on UNIX. On most operating system, such APIs can be used to
create a new process on thesamemachine only, that is, they cannot be used
to create a new process on a different machine. This suggests that you would
need to have a separate IMR on each machine where you wish to launch server
processes. This was a common feature of many early CORBA products. It
resulted in some frustration for administrators of large CORBA deployments
because they had to perform administration for several IMRs rather than than
for just one IMR.

7.2.4 Distributed Implementation Repositories

Many of the modern CORBA products have split the IMR into two parts, as
shown in Figure7.4. One process (called the “IMR point of contact” in the
diagram) listens on a fixed port, for example, port 4000, and this port num-
ber is embedded in IORs for objects in servers that are deployed through the
IMR. Aside from providing the well-known port to be embedded in IORs, this
process is also typically used to perform queries and updates to the IMR data-
base. Whenever the IMR wants to launch a server process, it delegates this
responsibility to a second process—called the “IMR launcher/monitor” in Fig-
ure7.4—that listens on another fixed port.

The intention of splitting the IMR functionality into two components is
that there may be several “IMR launcher/monitor” processes—typically one
for each computer on which server processes can be started. This arrangement
allows an IMR to span several computers. Obviously, the utility for registering
a server with the IMR needs to specify the host on which a server process
will run, as shown in the example below (the" \" character indicates a line
continuation):

reg_srv_with_imr BankSrv -host pizza.acme.com \
-launch "/bin/bank_srv -ORBServerId BankSrv ..."

One benefit of such a distributed IMR is that one centralized IMR database
can be used to maintain the registration details of CORBA servers on several

78 CHAPTER 7. IMPLEMENTATION REPOSITORY (IMR)

BankSrv

random port

port 4001

IMR launcher/monitor

launch

la
un

ch

PayrollSrv

random port

IMR
DB

port 4000

IMR point of contact

query/update

launch_srv(...)

InvoiceSrv

random port

port 4001

IMR launcher/monitor

launch

la
un

ch

StockControlSrv

random port

launch_srv(...)

host1

host2

Figure 7.4:A distributed Implementation Repository

7.2. IMR CONCEPTS 79

computers. Some organizations find this to be more convenient than having a
separate IMR database for each computer.

Another benefit is that the host and port information in an IOR is always
that of the “IMR point of contact” process, regardless of which host is used to
run the server process. For example, the “BankSrv” might initially be run on
one computer, but if this computer needs to undergo some maintenance work
then the “BankSrv” can be stopped and re-registered/restarted on a different
computer. In effect, the “BankSrv” can be migrated from one computer to
another. This migration can take placewithout invalidatingany previously
exported IORs of the server, because the host information in the IORs remains
that of the IMR’s point of contact process.

This distributed IMR architecture also offers a benefit for CORBA vendors.
Much of the platform-specific code in an IMR is concerned with starting and
stopping server processes. This platform-specific code can be encapsulated in
the “IMR launcher/monitor” process, which enhances maintainability of the
source code of the IMR.

Variations of the “distributed IMR” described above can be found in some
modern CORBA products. The differences tend to concern the organization of
the IMR database. For example:

• The “IMR point of contact” process might maintain a database that con-
tains therarely-changing, server registration details, such as a server’s
logical name, launch command and host. Details of which servers are
currently running, and the ports on which they are listening, are main-
tained in separate databases by each “IMR launcher/monitor” process.

• The “IMR point of contact” process might not maintain a database at all.
Instead, all the information about the servers that run on a particular host
is held in a database that is maintained by the “IMR launcher/monitor”
process on that host.

These variations are relatively minor implementation details, and do not have
any impact on the quality of service offered by a CORBA product.

CORBA products usually do not place any restriction on how many or how
few IMRs you can create and whether different IMRs run on thesameor dif-
ferent computers. Rather, the choice of the number of IMRs installed in an
organization is typically due to pragmatic considerations. For example, it is
common for each developer to have his or her own “private” IMR for day-to-
day development work. Another IMR might be used for system testing, and yet
another IMR might be used for deployed applications. An organization might
find it convenient to haveseveral“deployment” IMRs: perhaps a separate one

80 CHAPTER 7. IMPLEMENTATION REPOSITORY (IMR)

for each branch or department in the organization, or perhaps one IMR for pay-
roll applications and another IMR for stock-control applications. Obviously, if
there are several IMRs running on the same computer then they need to lis-
ten on different ports. Typically, environment variables, configuration files or
command-line arguments passed to a server are used to specify the host and
port for the IMR that controls it.

7.3 Examples of Implementation Repositories

The following subsections give a brief overview of the IMRs in several CORBA
products.

7.3.1 Orbix

The Orbix IMR is a distributed IMR, like that shown in Figure7.4:

1. The Orbix name for the “IMR point of contact” is thelocator dae-
mon(itlocator).5 Orbix calls this process a locator because it helps
clients to locate (objects in) server processes. The Orbix name for the
“IMR launcher/monitor” is thenode daemon(itnode daemon).6 It is
called this because there is one of these processes on eachnode(com-
puter) where server processes can be deployed through the IMR.

2. Theitadmin utility is a command-line-driven CORBA client that com-
municates with the locator daemon to query and update the IMR data-
base. In effect,itadmin performs the work of the hypotheticalreg
srv with imr utility discussed earlier in this chapter. A lot of Or-
bix administration is performed through various sub-commands of this
utility. When a server application is registered with the IMR, one piece
of registration information specifies the node daemon (computer) that
should be used for launching the server.

3. In older versions of Orbix, the node daemon used to “ping” servers pe-
riodically to check if they were still alive. In more modern versions of
Orbix, there is an open socket connection between the node daemon and
a server process; when this socket connection closes, the node daemon
realizes that a server has died.

5 Many executables supplied with Orbix start with the prefix"it" . This prefix is an acronym
for IONA Technologies, and is used to prevent namespace pollution of executables installed on a
computer.

6 Thenode daemonwas called theactivation daemon in older versions of Orbix.

7.3. EXAMPLES OF IMPLEMENTATION REPOSITORIES 81

When a server is being registered with the IMR, it can actually be registered
as areplicatedserver that can be run on several different computers. The IMR
keeps track of which server replicas are currently running, and can re-launch
replicas that have crashed. The IMR can use a round-robin or random policy
to redirect clients to server replicas. In this way, a per-client load-balancing
mechanism is provided by the Orbix IMR without any need for extra coding in
either client or server applications.

The Orbix IMR (and other other important pieces of infrastructure, such as
the Naming Service) can be replicated on several computers. Doing this avoids
single points of failure.

You create an Orbix IMR by running theitconfigure utility (which is
discussed in the OrbixAdministrator’s Guide). You should note thatimple-
mentation repositoryis the official CORBA terminology, but it is common for
CORBA vendors to invent their own names for their IMRs. For example, the
Orbix name for an IMR is alocation domain. A location domain is simply
the contents of the IMR database—that is, the details of all registered server
applications—plus the locator daemon and its supporting node daemon(s).

7.3.2 Orbacus

The Orbacus IMR is a distributed IMR, like that shown in Figure7.4:

1. The functionality of both the “IMR point of contact” and “IMR launcher/
monitor” are embedded in a single executable calledimr . In Orbacus
terminology, the “IMR launcher/monitor” capability is referred to as the
object activation daemon(OAD). By default, theimr executable en-
ablesboth the “IMR point of contact” and the OAD functionality; the
-master command-line option instructs it to enable just the “IMR
point of contact” functionality, and the-slave command-line option
instructs it to enable just the OAD functionality. If you want to have
server applications running on several computers all controlled by a sin-
gle IMR then start theimr executable on all the computers, but use the
-master and-slave command-line options to ensure that you have
“IMR point of contact” functionality on just one computer and OAD
functionality on all the computers.

2. The imradmin utility is a command-line-driven CORBA client that
communicates with the “IMR point of contact” process to query and
update the IMR database. In effect,imradmin performs the work of
the hypotheticalreg srv with imr utility discussed earlier in this

82 CHAPTER 7. IMPLEMENTATION REPOSITORY (IMR)

chapter. A lot of Orbacus administration is performed through various
sub-commands of this utility.

When you run the Orbacus IMR for the first time, it creates and initializes
its database. The Orbacus IMR cannot be replicated. Because of this, it is
a single point of failure, which may be unacceptable in some organizations.
Neither does Orbacus provide support for registering areplicated serverwith
the IMR.

7.3.3 TAO

Up until and including version 1.2, the TAO IMR was a monolithic IMR. How-
ever, version 1.3 saw the start of work to turn the monolithic IMR into a dis-
tributed IMR, like that shown in Figure7.4. This work is still ongoing. In
particular, the functionality of the IMR has been split into two executables—
ImplRepo Service (the “IMR point of contact”) andImR Activator
(the “IMR launcher/monitor”). However, in versions 1.3 and 1.4, both of these
processes must run on the same computer: support has not been added (yet)
for one ImplRepo Service to delegate to anImR Activator running
on another computer.

The tao imr utility is a command-line-driven CORBA client that com-
municates with the “IMR point of contact” process to query and update the
IMR database. In effect,tao imr performs the work of the hypotheticalreg
srv with imr utility discussed earlier in this chapter. A lot of TAO admin-
istration is performed through various sub-commands of this utility.

When you run the TAO IMR for the first time, it creates and initializes its
database. The TAO IMR cannot be replicated. Because of this, it is a single
point of failure, which may be unacceptable in some organizations. Neither
does TAO provide support for per-client load balancing by registering arepli-
cated serverwith the IMR.

7.4 Comparison of Different IMRs

The discussion in Section7.3 indicates some similarities and differences be-
tween the Orbix, Orbacus and TAO IMRs. It is worthwhile highlighting these,
because there are likely to be similar likenesses and differences with the IMRs
of other CORBA products:

• Each CORBA product tends to use its own terminology for the imple-
mentation repository. For example, Orbix uses the termslocator dae-

7.4. COMPARISON OF DIFFERENT IMRS 83

mon and node daemon, while Orbacus uses the termsIMR and OAD.
Such differences in terminology are confusing for many people.

• Some early CORBA products implemented the IMR as a monolithic
process. However, it is common for modern CORBA products to split
the IMR functionality into two separate applications, as illustrated in
Figure7.4on page78.

• Some CORBA products have built-inreplication infrastructure that al-
lows the IMR to be replicated and also optionally allows server applica-
tions to be replicated. This replication capability can be used to avoid
single points of failure in a deployed CORBA system, and may also pro-
vide per-client load balancing capabilities. Alternative replication mech-
anisms are discussed in Chapters17and18.

84 CHAPTER 7. IMPLEMENTATION REPOSITORY (IMR)

Chapter 8

Deploying CORBA
Applications

8.1 Deploying CORBA Clients

The details of deploying a CORBA client application vary slightly from one
CORBA product to another. However, the principles are straightforward. In
particular, you will need to do the following:

• Install a subset of the CORBA product (such as a configuration file, a
.jar file or shared libraries/DLLs) on the deployment machine. Obvi-
ously, you will not need to install the development parts of the CORBA
product, such as the IDL compiler. Some CORBA vendors provide a “in-
stall runtime only” and “install runtime and development tools” options
for their product installation utility. If such an option is not available
then it is usually easy to identify and copy the “runtime” subset from
a full CORBA installation on a development machine to a deployment
machine.

• Install the client executable on the deployment machine, along with re-
quired application-specific infrastructure, such as a configuration file
and/or a directory for storing log files.

When you run the client application, you might need to provide it with some
CORBA-related command-line arguments:

• You might need a command-line argument to tell the application where
it can find the CORBA product’s configuration file. Alternatively, this

85

86 CHAPTER 8. DEPLOYING CORBA APPLICATIONS

information might be communicated in a different manner, such as a
system property for Java applications or through an environment variable
for non-Java applications.

• If the diagnostics level specified in the configuration file for the CORBA
product is not to your liking then you might specify a command-line op-
tion that specifies a different diagnostics level. Likewise, if the CORBA
configuration file does not specify how to contact, say, the appropri-
ate Naming Service then you might use-ORBDefaultInitRef or
-ORBInitRef command-line arguments (discussed in Section12.5on
page127).

• Java provides an implementation of CORBA in its standard class li-
brary. If your application uses a different CORBA implementation then
you may need to use command-line arguments to define some Java sys-
tem properties that indicate which implementation of CORBA should be
used.

If you run a client application with many command-line arguments then it
becomes difficult to remember all the command-line arguments that must be
typed. A simple way around this problem is to write a “wrapper” UNIX shell
script or Windows batch file that runs the application with the appropriate
command-line arguments.

The above requirements for deploying a CORBA client are so simple that
the manuals for many CORBA products neglect to mention them and, ironi-
cally, this lack of documentation makes deployment seem more complex than
it is. If your CORBA vendor does not provide documentation on deploying ap-
plications then sending an email to the vendor’s technical support department
should enable you to receive helpful guidance.

The deployment issues discussed in this section apply not just to clients,
but also to server applications. However, there are some additional issues sur-
rounding the deployment of servers, as I discuss in the next section.

8.2 Deploying CORBA Servers

Several concepts—POA policies (Chapter6), the IMR (Chapter7) and object
references (Chapter10)—interact with each other and influence how you can
deploy a CORBA server. Most CORBA applications are deployed on a TCP/IP
network, so the discussion in this section assumes use of TCP-based commu-
nication. Section8.2.1gives a brief overview of some issues in deploying a

8.2. DEPLOYING CORBA SERVERS 87

(non-CORBA) TCP server. Then Section8.2.2explains deployment options
for a CORBA server through analogy with the deployment of a TCP server.

8.2.1 Overview of TCP Concepts

A TCP server listens on aport for incoming connections from clients. A TCP
server has two options for specifying the port on which it listens:

1. The server can tell the operating system that it wants to listen on aspe-
cific (or fixed) port.

2. The server can tell the operating system that it wants to listen on port 0
(zero). The operating system understands this to mean that the server
is happy to listen onanyport, and so the operating system allocates an
arbitrary port to the server. This arbitrary port is often called arandom,
transient(meaning temporary) orephemeral(meaning short-lived) port.

If a TCP server is coded or configured to listen on afixed portthen it will
listen on thesameport whenever it is killed and restarted. Conversely, if a
server is coded or configured to listen on arandom portthen it is likely to
listen on adifferentport each time it is killed and restarted.

By convention, some TCP-based applications listen on well-known, fixed
ports. For example, the default port for a web server is port 80. So when you
type the URLwww.amazon.com into your web browser, your web browser
connects to port 80 on the specified host. This convention makes it easier to
remember URLs, because you typically have to remember only the hostname
on which a web server runs, rather than having to remember the hostnameand
port. For the same reason, other well-known TCP-based applications, such as
POP3 mail servers (port 110), ftp servers (port 21), telnet servers (port 23) and
so on also have well-known, fixed ports reserved for their use.

If a TCP server listens on arandom portthen it needs some way to com-
municate this random port to potential clients so that the client applications can
connect to it. A simple way to do this is for the server to advertise its port by
writing it to a text file, and then for clients to read this file. Of course, this solu-
tion requires that the server and clients have a shared file system, so this is not
a geographically-scalable solution. A more complex, but more scalable, solu-
tion is for there to be an “advertisement server” that listens on a well-known,
fixed port and maintains a list ofserver-name→ port mappings. Whenever a
“normal” server starts up and listens on a random port, it contacts the advertise-
ment server to register its name and current port. Client applications connect to
the advertisement server and request the port associated with the desired server
name.

88 CHAPTER 8. DEPLOYING CORBA APPLICATIONS

One benefit of the hypothetical “advertisement server” is that you need to
allocateonly one fixed port. This fixed port is for the advertisement server it-
self; all the other servers that advertise themselves through it can listen on ran-
dom ports. This then reduces the administration overhead of having to choose
fixed ports that are reserved for use by TCP servers.

8.2.2 Deployment Models for CORBA Servers

Most CORBA applications are deployed on a TCP/IP network, so CORBA
servers are TCP servers that listen on a port. The CORBA concepts of the
implementation repository (Chapter7) and the Naming Service (Chapter4) are
bothanalogous to the TCP “advertisement server” described in Section8.2.1.
The Naming Service providesname→ IORmappings, while the IMR provides
IOR→ IOR mappings.1 This functionality of the IMR seems strange, until
you realize that the details that vary between the original and mapped IORs are
the host and port embedded in the IOR. Because of this, the IMR provides a
mapping from an IOR that contains the IMR’s well-known host and port to an
IOR that contains the host and (usually random) port of a server process.

Most CORBA products can be configured (or programmed using propri-
etary APIs) to be deployed in some or all of the following four ways:

1. The server listens on arandomport and is deployedwithout an IMR .
This approach is ideal if a server has onlytransientobjects, that is, all
objects are in POAs that have theTRANSIENTpolicy. However, this
deployment model is unsuitable for servers that have some objects in
PERSISTENTPOAs. This is because the port embedded in the IORs of
the persistent objects is a random port and the server is likely to use a
differentrandom port if it is killed and restarted. In effect, this deploy-
ment model has the undesirable side effect of turning persistent IORs
into transient IORs.

2. The server listens on arandomport and is deployedwith an IMR . In
this case, the server embeds its own host and (random) port into IORs of
transientobjects, but it embeds the host and fixed port of the IMR into
the IORs ofpersistentobjects. When a client sends its first request to a
persistent IOR, the request goes to the IMR. As discussed in Section7.2
on page70, the IMR uses theobject keyinformation in the header of
the request to identify the intended server. The IMR (re)starts the server

1 To be pedantic, the IMR providesobject-key→ IOR mappings. However, the object key
used is part of an IOR that contained the IMR’s host and port, so conceptually the IMR provides
IOR→ IORmappings.

8.2. DEPLOYING CORBA SERVERS 89

process if it is not currently running and then redirects the client to the
host and (random) port of the intended server process. This redirection
through the IMR occurs only for the first request from the client to an
IOR. Further requests from the client to the same IOR go directly to the
server.

3. The server listens on afixedport and is deployedwithout an IMR . In
this case, the server’s own host and port are embedded in bothtransient
andpersistentIORs. The embedding of a fixed port (as opposed to a
random port) inpersistentIORs ensures that the IORs are valid across
restarts of the server.

4. The server listens on afixed port and is deployedwith an IMR. In
this case, the server embeds its own host and (fixed) port into IORs of
transientobjects, but it embeds the host and fixed port of the IMR into
the IORs ofpersistentobjects. When a client sends its first request to a
persistent IOR, the request goes to the IMR. As discussed in Section7.2
on page70, the IMR uses theobject keyinformation in the header of
the request to identify the intended server. The IMR (re)starts the server
process if it is not currently running and then redirects the client to the
host and (fixed) port of the intended server process. This redirection
through the IMR occurs only for the first request from the client to an
IOR. Further requests from the client to the same IOR go directly to the
server.

There are a few points worth noting about the above deployment options.
First, the server’s own host and (random or fixed) port isalwaysembedded

in transient IORs. This means that transient objectsnevermake use of the IMR.
Some people make the mistake of assuming that if an IMR is running then
servers automatically make use of it. However, if a server hasonly transient
POAs then the server will just ignore the IMR. There is nothing preventing a
CORBA vendor from designing a product in which transient IORsdo contain
the host and port of the IMR, but it would not bring any benefits. The author is
not aware of any CORBA products that do this.

Second, there are some potential benefits to be had from deploying a server
on a fixed port (deployment models 3 and 4 in the above list):

• Some organizations use a hardwarerouter to load-balance client connec-
tions across a replicated server that is running on several machines. This
approach to load balancing may require that server applications listen on
fixed ports.

90 CHAPTER 8. DEPLOYING CORBA APPLICATIONS

• The use of fixed ports is “firewall friendly”.2

• In general, the fewer components there are in a computer system, the
more reliable the computer system will be. For this reason, some orga-
nizations prefer to deploy CORBA serverswithout an IMR. The use of
fixed ports makes it feasible to deploy a server without an IMR, even
if the server has persistent objects (deployment model 3 in the previous
list).

A counter argument to consider is that if the IMR is very stable then
the use of an IMR can actually improve reliability because it can be
used to automatically restart failed servers. Also, some CORBA prod-
ucts provide a fault-tolerance infrastructure through the IMR. This fault
tolerance can be used to replicate the IMR and/or server processes, and
so eliminate single points of failure within the computer system.

Third, some CORBA products make it easy to choose between all four
of the deployment models discussed above. Other CORBA products provide
easy-to-usesupport for a subset of the deployment models, but require use of
proprietary APIs or complex configuration for the other deployment models.
This is unfortunate because it often results in developershard-codinglogic
into an application that, in effect, decides how a CORBA server will be de-
ployed; it is preferable if deployment choices can be made at deployment time
rather than having to be decided at development time. Furthermore, the use of
proprietary APIs hinders portability. theCreation of POA Hierarchies Made
Simplechapter of theCORBA Utilitiespackage [McH] discusses how to work
around portability issues associated with different server deployment models.
Some CORBA products support only asubsetof the deployment models. For
example, the omniORB CORBA implementation does not contain an IMR and
so cannot support deployment models 2 or 4.

Finally, as previously mentioned, some CORBA products provide a fault-
tolerance infrastructure that is built into the IMR. In brief, when a client’s first
request on a persistent IOR goes to the IMR, the IMR can redirect the client
to one of severalreplicasof a server process. This type of fault-tolerance in-
frastructure (which can also provide per-client load balancing) works only for

2 A firewall is a part of security infrastructure that prevents malicious hackers on the Internet
from accessing the computers inside an organization’s network. A firewall blocksmostTCP/IP
traffic from outside the organization’s network, but can be configured to allow traffic on a set of
fixed ports. In this way, the firewall can be configured to allow external access to a small number
of services that are inside the organization’s network; typical examples include FTP, telnet and/or
a web server. A typical requirement for exposing an internal service through a firewall is that the
service listen on a fixed port .

8.3. THE NAMING SERVICE AND THE IMR 91

persistentobjects. It does not work fortransientobjects, because communica-
tion with transient objects never involves the IMR.

8.3 The Naming Service and the IMR

In Section8.2.2 on page88, I mentioned that the Naming Service provides
name→ IOR mappings, while the IMR providesIOR→ IOR mappings. The
fact that the Naming Service and the IMRbothcontain mapping functionality
is often confusing to people new to CORBA. However, the purpose of the map-
ping provided by the Naming Service is different to the purpose of the mapping
provided by the IMR.

• A stringified object reference (Section3.4.2on page34) is in the form
"IOR:<hex-digits>" so it is easy to store in a text file or database,
but it isnoteasy for humans to remember. The Naming Service provides
the ability to associate an easy-for-humans-to-remember name with an
IOR. This makes it easier for humans to keep track of IORs. Of course, a
person could decide to store stringified IORs in text files, with a separate
file for each IOR. If the files have easy-to-remember names then this
technique would serve a purpose similar to that of a Naming Service,
except that it would not be geographically scalable, because it is rare
for a file system to be accessible to computers that are geographically
distant.

• Regardless of whether a client application obtains an IOR from a file or
from the Naming Service, the host and port embedded in the IOR might
be for the target serveror for the server’s IMR. If the host and port are
for an IMR then the IMR redirects the client to the actual host and port
of the desired server process. The purpose of this redirection is to allow
some or all of the following benefits: (1) the IMR always listens on a
fixed port, but servers deployed through the IMR can listen on random
ports, so the administration overhead of allocating fixed ports for servers
is reduced; (2) the IMR can (re)start a server process that is not running;
and (3) some IMRs have built-in load-balancing and fault-tolerance in-
frastructure that allow them to redirect a client to one of severalreplicas
of a server process.

Another point of confusion with the Naming Service and the IMR is that
the Naming Service is itself a CORBA Server that is often deployed through
the IMR. Because of this, there can berepeatedredirection through the IMR
when a client application obtains an IOR from the Naming Service and uses this

92 CHAPTER 8. DEPLOYING CORBA APPLICATIONS

to communicate with a persistent object in a server that is also also deployed
through the IMR.

• When the client passes"NameService" as a parameter toresolve
initial references() (discussed in Section3.4.1on page33), it
obtains an IOR for the Naming Service (this IOR is typically obtained
from a configuration file). When the client invokes upon this IOR to
communicate with the Naming Service, the client’s first request will go
to the IMR and the IMR will redirect the client to the Naming Service.

• Then when the client obtains an IOR from the Naming Service and in-
vokes upon this IOR, the client will be redirected via the IMR to the
desired server process.

Part IV

CORBA Infrastructure

93

Chapter 9

More Details on IDL

The basic concepts of IDL were discussed in Section1.4. This chapter pro-
vides details on some of the more obscure or recent additions to IDL, and also
discusses how to work around CORBA’s lack of a versioning mechanism.

9.1 Pseudo-IDL,local and native types

In general, it is never possible tocompletelydefine a system in terms of itself,
and CORBA is no exception. In particular, the OMG naturally decided to use
IDL to define most of the APIs of CORBA, but there were some APIs that were
impossible to express in legal IDL. For example, all IDL interfaces implicitly
inherit from the base typeObject . It is not possible to express the API of the
Object interface in syntactically legal IDL becauseObject is a reserved
keyword rather than an identifier. To work around this problem, the OMG used
an informal notation called pseudo-IDL (PIDL) to define APIs of built-in types,
such asObject . Pseudo-IDL is written as closely as possible to real IDL but
a comment of the form"// PIDL" indicates that the API is not syntactically-
valid IDL and hence cannot be run through an IDL compiler. PIDL was used
extensively in early versions of the CORBA specification.

As CORBA matured, two new keywords—local and native —were
introduced to IDL that made it possible to define a greater range of CORBA
APIs in IDL. The introduction of these keywords reduced (but did not entirely
eliminate) the need for pseudo-IDL.

Thelocal keyword can appear in front of aninterface definition. The
effect is to define an interface that can be accessed only locally, that is, only
within the same process. This keyword is not normally used by application-

95

96 CHAPTER 9. MORE DETAILS ON IDL

level developers. Rather, the intention of this keyword is to allow many local-
access-only APIs of CORBA to be defined in IDL. For example,DynAny
(Section15.3), Current (Chapter13), portable interceptors (Chapter14),
Policy (Section16.1), the ORBitself and many of the types used for im-
plementing server applications—POA, POAManager, ServantManager ,
Policy , and so on (Chapter5)—are defined aslocal interface types.

The native keyword is used to indicate that a type is not an IDL type
but rather is implemented in thehost language, that is, C++/Java/Cobol or
whatever programming language is used by developers to implement CORBA
applications. Anative type can be passed as a parameter only tolocal
interfaces. The purpose ofnative declarations is to allow parts of CORBA
to interact with the host language. For example, CORBA uses the terminol-
ogy servant(Section5.2) to refer to the host language object that represents a
CORBA object; there is a corresponding declaration:

native Servant;

The POA infrastructure (Section5.5) defines severallocal interfaces with
operations that takeServant parameters.

9.2 Objects By Value (OBV)

CORBA became popular a few years before Java/J2EE became popular. When
J2EE was announced, it was recognized that in some ways CORBA and J2EE
complemented each other but that in other ways they were competitors. There
was a lot of speculation about whether one of these apparently-competing tech-
nologies would “beat” the other. There was one particular capability present in
Java that was missing from CORBA and some people within the OMG felt that
CORBA should be enhanced to provide a similar capability. This feature was
to become known asobjects by value(OBV). The driving force behind OBV
was not good technical innovation but rather was political and marketing pres-
sure to defend CORBA from the perceived threat of J2EE. Quite predictably,
the resulting OBV specification was (and remains) somewhat controversial be-
cause it has some technical rough edges and provides capabilities that can be
misused easily.

9.2.1 The Java Equivalent of OBV

Before discussing what OBV is from a technical perspective, it is useful to
discuss the Java-based technologies that it tries to emulate. Java has built-in

9.2. OBJECTS BY VALUE (OBV) 97

support forserializingan object, that is, converting the in-memory representa-
tion of an object into a binary buffer and then later converting from the binary
buffer back into an in-memory representation. This serialization capability of
Java provides a convenient way to persist Java objects, by storing the binary
buffer representation in, say, a file or database. It also makes it possible to
serialize a Java object into a binary buffer, transmit this buffer across a socket
connection to another Java process, and for the receiving process to re-create
the Java object in its own address space. In effect, a Java object can be trans-
mitted “by value” from one Java process to another Java process. Actually,
the mechanism discussed so far serializes and transmits only the state (instance
variables or fields) of the Java object. An object is bothstateand theopera-
tions that manipulate that state. However, Java is also capable of transmitting
the bytecode that implements the operations of an object. In this way, Java is
able to transmitboth the state and operations of an object. Transmitting the
bytecode of an object is important because the receiving Java process might
not have local access to the relevant bytecode. For example, the receiving Java
process might be expecting an object of typeGraphic but might actually re-
ceive asubtypeof Graphic calledCircle for which it does not have access
to the relevant bytecode.

An obvious question about this Java capability is: Is this really useful? A
typical usage for this is the following interaction between a client application
and server application:

1. The client invokes an operation on the server. The return value of the
operation is an object (state and, if required, bytecode).

2. The client invokes many fine-grained operations upon its local (copy of
the) object.

3. When the client has finished making its updates to the local object, it then
makes a remote call to the server application, and passes the (updated)
object as a parameter.

The main benefits offered by this usage scenario are as follows:

• Passing objects (by value) between processes can provide a significant
optimization. In step 2 above, having the client make fine-grained oper-
ation calls upon alocal object is much faster than making similar calls
upon aremoteobject. This is because a remote call typically involves
a few milliseconds of network latency; the local calls do not have this
overhead.

98 CHAPTER 9. MORE DETAILS ON IDL

• The same optimization could be achieved by passing justdata—for ex-
ample, structs and sequences—between the client and server. However,
this would expose the client to the low-level data directly. It is better for
these low-level implementation details to be hidden within operations,
particularly if the bytecode of these operations can be transmitted auto-
matically from the server to the client.

9.2.2 Objects By Value in CORBA

A CORBA interface has operations but no state variables. In contrast to
this, a CORBAstruct has state variables (fields) but no operations. A new
construct, called avaluetype , has been introduced to IDL. Avaluetype
looks like a cross between aninterface and astruct because it has both
operations and state variables. Some examples ofvaluetype declarations
are shown in Figure9.1.

valuetype Date {
short year;
short month;
short date;
void next day();
void previous day();

};
valuetype OptionalString string;

Figure 9.1:Example of IDLvaluetype definitions

When avaluetype is passed as a parameter, its state variables are trans-
mitted. Operations invoked upon avaluetype are always invoked on the
local (copy of the)valuetype . In general, it is not feasible for the code that
implements the bodies of operations to be transmitted, because the client appli-
cation and server application may be implemented with different programming
languages and/or on different CPU types. For this reason, the client and server
application developers must write and maintain separate implementations of
the valuetype ’s operations. This requirement introduces a big problem:
there is no guarantee that the server-side implementation of thevaluetype
operations is semantically equivalent to the client-side implementations of the
same operations. When developing the first version of the client and server
applications, developers on both sides will probably take great care to ensure

9.2. OBJECTS BY VALUE (OBV) 99

that the client-side and server-side operations have equivalent semantics. How-
ever, during ongoing maintenance of the applications, it is quite possible that a
change in semantics (perhaps in the form of a bug-fix or a buggy optimization)
will be introduced into the server-side implementation of the operations, but
that a similar change will not be made in the client-side operations. During the
lifetime of a project, there may be one server implemented in, say, C++, and
several different kinds of clients, each of which is implemented in different
languages, such as Java, Ada and Cobol. Maintaining semantic equivalence of
operations implemented in multiple programming languages and used in mul-
tiple applications can quickly become a significant burden.

Opponents ofvaluetype point out that distributed applications have
been successfully developed and deployed for several decadeswithout the use
of valuetype (or something similar). Because of this,valuetype is not
an essential feature of CORBA and can (and probably should) be ignored.

Having discussed one of the main drawbacks ofvaluetype , I now briefly
list some of the extra capabilities that they provide.

valuetype Base {
long some_data;

};
valuetype Derived : Base {

long more_data;
};

Figure 9.2:Inheritance ofvaluetype definitions

First, if you declare avaluetype that contains state variables but no
operations then it is semantically similar to astruct but has one additional
benefit: you can havesingleinheritance of suchvaluetype s.1 This is shown
in Figure9.2. In effect, you can think of avaluetype as being astruct
with inheritance.

Second, avaluetype is always passed in a manner similar to a C++
pointer (areferencein Java). For example, if a field within avaluetype is
anothervaluetype then this field is apointerto the embeddedvaluetype .
It is legal to use a null pointer where avaluetype is expected. By introduc-
ing pointer semantics to IDL,valuetype s allow you to model cyclic graph
structures. Also, if you declare avaluetype that has just one field, say, a
string , then this allows you to pass a “normal” string (embedded inside a
valuetype) or a null pointer as a parameter. In effect, this is a convenient

1 You can usemultiple inheritance ifvaluetype s have operations but no state variables.

100 CHAPTER 9. MORE DETAILS ON IDL

way to pass an “optional value” as a parameter.2 The designers of OBV felt that
the “optional value” usage ofvaluetype would be useful often enough that
they invented some syntactic sugar for it. This syntactic sugar is illustrated by
theOptionalString declaration in Figure9.1. This syntactic sugar format
is usually referred to as avaluebox.

9.3 Versioning

CORBA doesnot have a mechanism for versioning IDL definitions. Unfortu-
nately, there is widespread confusion about this. The confusion arises because
CORBA 1 defined a syntactic place-holder for a possible future versioning
mechanism. The syntactic place-holder was called#pragma version and
it was intended to be used in IDL files as shown in the example below:

#pragma version "1.2"

The "1.2" was intended to indicate a version number for the following IDL
construct.

A versioning mechanism requires more than just a syntactic construct: it
requires additional supporting infrastructure. However, the OMG has never
defined the necessary supporting infrastructure to make#pragma version
useful. Because of this,#pragma version “is a historical relic and is ig-
nored by the ORB” [HV99, Section 4.19.3]. Unfortunately, the continued pres-
ence of this syntactic place-holder leads many people to incorrectly assume that
CORBA has a versioning mechanism and they then waste time and effort trying
to make use of it.

Given that CORBA does not have a built-in versioning mechanism, the
question then arises of whether there is any way to fake a versioning mecha-
nism. Two (imperfect) suggestions are discussed below.

One approach is to (mis)use inheritance as a versioning mechanism. For ex-
ample, let us assume that you have an existing IDL interface calledAccount
and you want to create a new version that has additional functionality. You can
do this by defining a new interface called, say,Account2 that inherits from
Account and adds new operations.3 This approach works if the new version

2 IDL provides two other ways to pass an “optional value”. One way is to use asequence of
length 1 to hold the value and asequence of length 0 to indicate “no value”. The other way is to
use aunion . The union’s discriminant (case label) can indicate whether or not the intended value
is provided.

3 The OMG used this approach with the Naming Service. The first version of the Naming
Service defined an interface calledNamingContext (in moduleCosNaming). “Version 2” of
the Naming Service was defined in an interface calledNamingContextExt that inherited from
NamingContext and added some new operations.

9.3. VERSIONING 101

of the interface onlyaddsnew functionality; it will not work if you need to
deleteor modifythe signatures of existing operations. Also, this approach will
result in a deep inheritance hierarchy if you use it to define several versions of
an interface.

module Finance {
...
interface Account {

...
};

};

module Finance2 {
...
interface Account {

...
};

};

Figure 9.3:A copy-and-modify approach to versioning

Another approach to faking versioning is to define a new, unrelated inter-
face. This is illustrated in Figure9.3. The original IDL types for an application
are defined in moduleFinance (shown in the box on the left). When a new
version of the application is being developed, a copy is made of the IDL file
and the module is renamed fromFinance to Finance2 .4 Then the types
within Finance2 can be modified without restriction. As far as humans are
concerned,Finance2::Account is “similar to” Finance::Account
and so they can think of them as being different versions of the same interface.
However, this “versioning” is entirely within the minds of humans. As far as
CORBA is concerned, the two interfaces are semantically unrelated.

In general, it is good coding practice to define all types inside modules, as
this reduces namespace pollution. The use of modules offers another benefit
for versioning: it is much more convenient to embed the version number in
the name of one module rather than embed the version number in the names
of the, possibly numerous, data-types defined within the module. Also, when
updating version 1 of the source-code of an application to produce version 2,
a single global-search-and-replace within source-code files for the name of the
module is easy to perform.

It should be noted that the lack of a built-in versioning mechanism is not
unique to CORBA. Most middleware systems lack a versioning mechanism, as
do most programming languages.

4 The naming scheme would be more consistent if the original module had been called
Finance1 rather thanFinance . However, such foresight is rarely found in reality and so ver-
sion numbers usually arenot embedded in the name of the original module.

102 CHAPTER 9. MORE DETAILS ON IDL

9.4 Repository IDs

A repository idis a slightly mangled form of the fully-scoped name of an entry
in an IDL file. For example, the repository id ofFinance::Account is
"IDL:Finance/Account:1.0" . In general, all occurrences of"::" in
the fully-scoped name are replaced with"/" . The resulting string is then
prefixed with"IDL:" and suffixed with"1.0" .5

IDL allows a #pragma prefix "..." construct to be used in IDL
files. An example is shown below:

#pragma prefix "acme.com"
module Finance {

interface Account { ... };
};

If a #pragma prefix directive is used in an IDL file then the specified pre-
fix ("acme.com" in the above example) is embedded into the repository ids
for all types in that file. For example, the repository id for typeFinance::
Account is "IDL:acme.com/Finance/Account:1.0" .

Repository ids are a form of runtime type information. Most CORBA appli-
cations rely on compile-time type checking so repository ids are not used very
frequently. However, most CORBA developers do encounter repository ids oc-
casionally, so it is useful to know what they are and what their intended usage
is. Here is an incomplete list of when repository ids are used:

• As mentioned in Section1.5 on page14, an interoperable object refer-
ence (IOR) contains the “contact details” for an object. However, the
IOR may also contain the repository id for the object’s type.6 The pres-
ence of a repository id in an IOR is a very useful debugging aid. For
example, most CORBA implementations provide a command-line util-
ity that can print out the repository id and contact details contained inside
an IOR (Section3.4.2on page34). It is common for people to use such
utilities to help them diagnose problems when developing and deploying
a client-server system. Often a problem is due to a client being given
the wrong kind of IOR, for example, an IOR for anEmployee object

5 The "1.0" suffix denotes the version number. This version number was incorporated into
the repository id to support the (later abandoned) versioning mechanism discussed in Section9.3.
A #pragma version directive could be used to change the version number embedded in a
repository id, but there is no point in doing this because, as explained in Section9.3, CORBA does
not offer a proper versioning mechanism.

6 The CORBA specification states that an IOR is not obliged to contain a repository id; an
IOR may contain an empty string instead. However, most CORBA implementations embed a
repository id into IORs.

9.4. REPOSITORY IDS 103

rather than an IOR for aFinance::Account object. Being able to
see the repository id embedded in an IOR often helps people to diagnose
these kinds of problems easily.

• When an operation in a server application throws an exception, the ex-
ception’s repository id is marshaled (serialized) first, followed by the
fields within the exception. In this way, the CORBA runtime system
in the client application can use the repository id to determine the ex-
ception’s type; this then tells the CORBA runtime system how it should
unmarshal (deserialize) the fields of the exception. A discussion about
marshaling can be found in Section11.2on page113.

• Repository ids are used in programs that utilize meta-information (Chap-
ter15).

I mentioned earlier that use of a#pragma prefix "..." directive
causes the specified prefix to be embedded in the repository ids for all types in
that IDL file. Use of a#pragma prefix directive doesnot affect the pub-
lic API that is generated by an IDL compiler. For example, it does not affect
the public API of the C++ or Java types generated by an IDL compiler. How-
ever, it does affect theimplementationof the generated operations that return
the repository ids of IDL types. This is because the string returned by these
operations must embed the string used in a#pragma prefix directive.

Sometimes people wonder what purpose is served by placing#pragma
prefix directives in IDL files. The answer can be illustrated with an example.
Let us assume that the Bank of America defines a module calledFinance
that contains anAccount interface. Without use of a#pragma prefix
directive, the repository id of this type is"IDL:Finance/Account:1.0" .
The problem is that the Bank of America might not be the only organization
in the world to define an interface calledFinance::Account . If another
organization defines an interface with the same name (and presumably with
operations that have different signatures) then it might be difficult to diagnose
problems if a client application that was written to communicate with a Bank of
America server accidentally gets an IOR for aFinance::Account object
in a different organization. To avoid such problems, developers are encouraged
to put a#pragma prefix into all their IDL files. The prefix string should
contain something that is unique to the developer’s organization. Typically,
an Internet domain name is used, as this is a globally unique identifier. For
example, IDL files written by developers in the Bank of America might contain
the following:

#pragma prefix "bankofamerica.com"

Now, an IOR for theFinance::Account interface defined in such a file is:

104 CHAPTER 9. MORE DETAILS ON IDL

IDL:bankofamerica.com/Finance/Account:1.0

If a client application is developed with the Bank of America IDL files then the
CORBA runtime system in this client application will throw an exception if it
is mistakenly given an IOR that contains an inappropriate repository id such as
"IDL:Finance/Account:1.0" or "IDL:bankofengland.co.uk/
Finance/Account:1.0" .

9.5 Miscellaneous New Keywords

The following new keywords have been added to IDL in recent years.
The typeprefix keyword serves a purpose similar to the#pragma

prefix construct discussed in Section9.4. An example of its use is shown
below:

module CosNaming {
typeprefix CosNaming "omg.org";
...

};
In this example, thetypeprefix command causes the"omg.org" prefix
to be embedded in the repository ids for theCosNaming module and all types
declared inside it.

The import keyword serves a similar purpose to a#include directive
that was discussed in Section1.4.1on page8. An example of its use is shown
below:

import CosNaming;

As shown in this example,import is typically followed by the name of a
module. It has the effect of including the IDL file that contains that module.

An operation can have araises clause, which means that it can raise
user-defined exceptions. In contrast, for many years anattribute (which
is, in essence, syntactic sugar for a pair of get- and set-style operations) could
not have araises clause, so it could not raise exceptions. The new key-
words getraises and setraises have been added to IDL to specify
what exceptions can be raised by the get- and set-style operations for which
anattribute is syntactic sugar.

exception X { ... };
exception Y { ... };
exception Z { ... };
interface Foo {

attribute string name getraises (X, Y) setraises (Y, Z);
};

Chapter 10

Interoperable Object
Reference (IOR)

10.1 Introduction

An interoperable object reference(IOR) is the “contact details” that a client
application uses to communicate with a CORBA object. Theinteroperablein
interoperable object referencecomes about because an IOR works (or interop-
erates) across different implementations of CORBA. For example, an IOR for
an object in an Orbix server can be used by a client that is implemented with,
say, Orbacus, Visibroker, TAO, omniORB or JacORB.

Many people are content to know that object references are “contact de-
tails” for CORBA objects, and they do not seek any additional information
about object references. If you are such a person then you can skip this chap-
ter. However, CORBA IORs are remarkably flexible, and this flexibility is
fundamental to the implementation of several other components of CORBA,
including implementation repositories (Chapter7), messaging (Chapter16)
and transactions (Chapter21). Because of this, having an understanding of
the information containedinsideobject references makes it much easier to un-
derstand other parts of CORBA.

10.2 IDL Definition of an IOR

CORBA uses IDL to define some of its low-level APIs. Because of this, it is
not surprising that the details of an IOR are defined as an IDLstruct , as is

105

106 CHAPTER 10. INTEROPERABLE OBJECT REFERENCE (IOR)

shown in Figure10.1. The contents of thisstruct can be explained easily
by analogy with a business card, which—because it also contains “contact de-
tails”—is the business equivalent of an IOR. A sample business card is shown
in Figure10.2.

module IOP {
typedef unsigned long ProfileId ;
const ProfileId TAG INTERNET IOP = 0;
struct TaggedProfile {

ProfileId tag;
sequence<octet> profile data;

};
struct IOR {

string type id;
sequence<TaggedProfile> profiles;

};
...

};

Figure 10.1:IDL definition of an IOR (interoperable object reference)

John Doe
 Senior Consultant

Telephone: 555-493-687

Fax:

Email:

555-493-001

john.doe@acme.com

Figure 10.2:Example of a business card

The type id field of the IOR struct contains the object’s repository id
(Section9.4on page102). The equivalent of thetype id on a business card
is the job title, such, assenior consultant, sales person, director or software
engineer.

The other field in an IOR is a sequence ofTaggedProfile . The name
of this type is not very intuitive, so it deserves some explanation.Profile is
the contact details expressed as binary data (asequence<octet>)1 and a
tag tells us how to interpret that binary data. An analogy of aprofile in the
business card is the number 555–493–687. To make sense of this number, you

1 An octet is the built-in IDL type that denotes a byte of raw data.

10.2. IDL DEFINITION OF AN IOR 107

need to look at itstag to find out that it is a telephone number rather than, say,
a fax number. The OMG-defined tag valueTAGINTERNET IOP specifies
that the binary data provides IIOP2 contact details, and another set of IDL
type definitions (which are discussed in Section10.2.2) define the layout of the
binary data. The tagged-profile approach to specifying contact details provides
some future-proofing. For example, if the popularity of TCP/IP declines in the
future when another transport mechanism is invented then the OMG can define
a new tagged-profile format to support that transport mechanism. Furthermore,
CORBA vendors can define their own proprietary tagged profiles. For example,
CORBA has not yet standardized on a way of communicating using shared
memory or wireless networks, but several CORBA vendors have defined their
own proprietary protocols for these purposes.

An IOR contains asequenceof tagged profiles. This means that an IOR
can list several sets of contact details. For example, perhaps one set of con-
tact details is for a proprietary shared-memory protocol and another is for the
CORBA-compliant IIOP protocol. When a client that is built with the same
CORBA vendor’s product uses the IOR, it will choose one of the profiles (prob-
ably the first one it finds). When a client that is built with adifferentCORBA
vendor’s product tries to use the IOR, the client ignores the shared-memory
profile because it does not recognize the proprietary tag value and instead uses
the IIOP profile. An IOR that contains several profiles—for different transport
mechanisms—is analogous to a business card that lists several sets of contact
details, such as a telephone number, fax number, email address and postal ad-
dress.

An IOR could contain several profiles, all of which use the same underlying
transport mechanism. For example, an IOR could contain 3 or 4 different sets
of IIOP contact details. This could be used to provide load balancing or fault
tolerance. It is important to note that CORBAallows this flexibility but does
not requirethat a CORBA vendor exploit it. Many CORBA products embed
just a single set of contact details in IORs. A few CORBA products provide
load balancing and fault tolerant capabilities that are based on IORs containing
several profiles. Whether a server exports single-profile or multi-profile IORs
doesnot affect interoperability with clients.

10.2.1 Space Optimization

There is one interesting way in which the analogy between an IOR and a busi-
ness card falls down. A business card typically has the person’sname—in

2 IIOP (Internet Inter-ORB Protocol) is the CORBA protocol for communication on TCP/IP
networks. CORBA protocols are discussed in Chapter11.

108 CHAPTER 10. INTEROPERABLE OBJECT REFERENCE (IOR)

other words, his or her (hopefully unique) identity—written on it exactly once.
A CORBA object has an identity that is unique within a server process. This
identity is called itsobject key. The object key information is embedded in-
side the tagged profile information. Because of this, if an IOR contains several
tagged profiles then the object key informationmaybe repeated several times—
once inside each and every tagged profile. However, theTaggedComponent
mechanism (discussed in Section10.2.3) provides an optional space optimiza-
tion that allows a single profile to contain one object key andseveralsets of
(host, port) tuples.

10.2.2 IIOP Contact Details

One issue that has not been discussed yet is this: what do the contact details
inside an IOR look like? In practice, most IORs contain a singleprofile (set of
contact details) for the IIOP protocol. Figure10.3shows the information stored
in an IIOP profile. The GIOP marshaling rules (Section11.2on page113) are
used to marshal an IIOP profile into a binary buffer. This binary buffer is then
stored in thesequence<octet> data of aTaggedProfile .3

As can be seen, an IIOP profile contains thehost andport at which a
client can connect to the server process. A server process might containsev-
eral objects, so theobject key is used to identify exactly one object within
the server process. The reason for the presence of theTaggedComponent
entries will be discussed in Section10.2.3.

When a client wants to make a call upon an object by using its IOR, the
client application opens a TCP/IP socket connection to the host and port spec-
ified in the IOR. It then sends the request. The header of the request specifies
the object key of the target object and the name of the operation being invoked.
The CORBA runtime system within the server application uses this header in-
formation to find the correctservant(Section5.2 on page45) and to call the
appropriate operation upon that servant.

10.2.3 The use ofTaggedComponent entries in an IOR

An IIOP profile (Figure10.3) contains asequence<TaggedComponent> .
A TaggedComponent consists of binary data (asequence<octet>), and
a tag tells us how to interpret that binary data. The OMG has defined over
30 different types ofTaggedComponent so far, which are used to specify
additional information about an object reference, such as:

3 CORBA uses the termencapsulationto refer to marshaling one type into a binary buffer and
then storing this in asequence <octet >.

10.2. IDL DEFINITION OF AN IOR 109

module IOP {
typedef unsigned long ComponentId ;
struct TaggedComponent {

ComponentId tag;
sequence<octet> component_data;

};
...

};
module IIOP {

struct Version {
octet major;
octet minor;

};
struct ProfileBody 1 1 { // also used for 1.2 and 1.3

Version iiop_version;
string host;
unsigned short port;
sequence<octet> object key;
// added in 1.1; unchanged for 1.2 and 1.3
sequence<IOP::TaggedComponent> components;

};
...

};

Figure 10.3:IDL definition of an IIOP Profile in an IOR

• An alternative (host, port) tuple that can be used to communicate with the
object. This is a space-saving optimization, as an IOR with one profile
that contains multiple (host, port) tuples is more compact than an IOR
with multiple profiles.

• The code sets (character sets) that can be used to sendchar /string
or wchar /wstring parameters (Section11.7on page120).

• Information used to implement security policies.

• Whether or not the object can participate in a distributed transaction
(Chapter21).

• Details of message routers that can be used for time-independent invo-
cations (Section16.3on page149).

110 CHAPTER 10. INTEROPERABLE OBJECT REFERENCE (IOR)

10.3 Proxy

The IOR structure (Figure10.1on page106) contains the contact details for a
CORBA object. However, it does not specify the signatures for operations that
may be invoked upon the object. Aproxy is a C++/Java/whatever-language-
you-are-using object “wrapper” around the IOR and it provides the signatures
of the IDL operations for the remote CORBA object. When a client application
invokes an operation on a proxy, the proxymarshals(Section11.2on page113)
the in /inout parameters into a binary buffer and then transmits this request
using the contact details specified in the IOR. The proxy waits to receive a
reply message, unmarshals theout /inout parameters and return value and
then returns these to the calling code.

The previous paragraph explained that a proxy is a wrapper around an IOR.
However, the distinction between an IOR and awrapperaround an IOR is often
irrelevant. Because of this, the termproxy is often used as a synonym for an
IOR.

Chapter 11

On-the-wire Protocols

11.1 GIOP, IIOP and the Protocol Stack

Many people care that a CORBA clientcan communicate with a CORBA
server, but they do not carehow the communication happens. However, some
peopledo care about (the principles that underlie) the low-level details of
CORBA’s communication infrastructure. There may be several reasons for
their interest, for example:

• Some people want to understand how efficient CORBA’s communication
mechanism is so that they can compare it to the efficiency of another dis-
tributed middleware technology, for example, IBM MQ Series or SOAP.

• Most organizations make use of TCP/IP networks. However, some or-
ganizations use other transport mechanisms. People from such organi-
zations may be curious if CORBA is flexible enough to be used with (or
adapted for use with) their preferred networking technology.

The OMG decided to provide an efficient and flexible inter-application
communication mechanism by designing a multi-layer protocol stack, as shown
in Figure11.1. All CORBA on-the-wire protocols are designed around some
common guidelines. This makes it relatively easy to build bridges between the
different protocols. One of the common guidelines includes the definition of
an IOR (Chapter10), which holds the “contact details” of an object, regardless
of which on-the-wire protocol is being used.

An Environment-Specific Inter-ORB Protocol(ESIOP) is an on-the-wire
protocol that is optimized for a specific environment. For example:

111

112 CHAPTER 11. ON-THE-WIRE PROTOCOLS

 Other GIOP
protocols

 ESIOP
protocols

 common protocol
guidelines and IORs

 GIOP

 IIOP

Figure 11.1:The hierarchy of CORBA protocols

• In the early days of CORBA, there were still a lot of organizations using
DCE RPC (an older middleware technology). An ESIOP for DCE was
defined, which made it possible for CORBA applications to interoperate
efficiently with existing DCE applications.

• The Orbix product from IONA Technologies has been ported to IBM
mainframes. In the mainframe environment, Orbix uses a proprietary
ESIOP that allows Orbix to communicate efficiently with various com-
ponents that are native to the mainframe operating system.

Aside from ESIOPs, all CORBA protocols are based on theGeneral Inter-
ORB Protocol(GIOP). This protocol defines the different message types (such
as request and reply messages) that can be exchanged between client and server
applications and also specifies a binary format for the on-the-wire representa-
tion of IDL types (boolean , long , string , enum, struct , sequence ,
union and so on).

The main thing that GIOP doesnot specify is the actual networking tech-
nology that is used to transmit messages between clients and servers. For ex-
ample, GIOP does not specify if messages should be transmitted over TCP/IP,
X25, ATM or some other transport. Instead, the choice of transport mechanism
is decided in aspecializationof GIOP. The most well-known GIOP specializa-
tion is the Internet Inter-ORB Protocol(IIOP), which is for use on TCP/IP
networks. All CORBA products are obliged to support IIOP, but they may op-
tionally support other GIOP-based protocols or ESIOPs too. An IOR contains
the contact details for all the protocols that clients can use to communicate with
an object in a server.

11.2. MARSHALING IDL TYPES 113

11.2 Marshaling IDL Types

The act of placing IDL types into a binary buffer (in preparation for transmis-
sion) is calledmarshaling. Conversely, extracting IDL types from a binary
buffer is calledunmarshaling.1 The marshaling rules used by CORBA are
called Common Data Representation (CDR). CDR consists of several rules, as
I now discuss.

One CDR rule is that data is marshaled using the native endian format of
the computer that is sending a message. A flag in the header of GIOP mes-
sages specifies whether the message is inbig-endianor little-endianformat.2

If the receiving computer uses the same endian format then the data can be
unmarshaled directly; otherwise byte-swapping is performed when unmarshal-
ing numeric values. In effect, this CDR rule provides an optimization for the
common case where a client and server run on machines with the same endian
format.

Another CDR rule states how many bytes of memory basic data-types use
and their memory-alignment requirements:

• char , octet andboolean occupy 1 byte of memory and have no
alignment requirements.

• short andunsigned short occupy 2 bytes of memory and must
be aligned on a 2 byte boundary.

• long , unsigned long and float occupy 4 bytes of memory and
must be aligned on a 4 byte boundary.

• long long , unsigned long long anddouble occupy 8 bytes
of memory and must be aligned on an 8 byte boundary.

• long double occupies 16 bytes of memory and must be aligned on
an 8 byte boundary.

The memory-alignment rules of CDR were chosen to be similar to the memory-
alignment requirements of some CPUs. It was hoped that this would facilitate
optimizations in CORBA’s transport layer. However, experience has shown

1 Marshalingandunmarshalingare commonly used terms. However, some people use other
terms, such asencodinganddecoding, or serializinganddeserializing.

2 Big-endianand little-endian refer to the whether multi-byte integers are stored in memory
with their most-significant or least-significant byte first. These terms originate from the book
Gulliver’s Travelswritten by Jonathan Swift in 1726. In this satirical novel, a race of people have
a civil war because they cannot agree if a hard-boiled egg should be eaten starting at its big end or
its little end.

114 CHAPTER 11. ON-THE-WIRE PROTOCOLS

that the memory-alignment requirements are mainly a small coding nuisance
for people implementing CORBA. Such is the benefit of hindsight.

Finally, there are rules for how compound types are marshaled in terms of
the basic types:

• An enum is marshaled as anunsigned long .

• A string is marshaled as the length of the string (anunsigned
long), followed by each character of the string, and is followed with
a terminating null character.

• A struct is marshaled by marshaling each field.

• An exception is marshaled as the exception’s repository id (Sec-
tion 9.4on page102), which is a string, followed by each field.

• A union is marshaled as its discriminant followed by the active branch
(if any).

• A sequence is marshaled as the number of elements it contains (rep-
resented as anunsigned long) followed by each element.

• An array is marshaled by marshaling every element in the array.

• An any is marshaled by marshaling itsTypeCode (Section15.2 on
page139) and then its embedded value.

• An object reference is marshaled by marshaling an IOR, which is a
struct shown in Figure10.1on page106.

The above discussion is not exhaustive, for example, it does not discuss the
marshaling of aTypeCode or avaluetype . However, it does provide a rep-
resentative example of how CDR marshaling works. The memory-alignment
rules imply that a GIOP message may contain some padding bytes, which is
wasted bandwidth. However, in practice, padding bytes usually account for
only a few percent of a GIOP message, so the wasted bandwidth is quite mini-
mal.

11.3 GIOP Message Types

GIOP defines eight different types of messages that can be transmitted between
client and server applications. Theoretically, a developer should not need any

11.3. GIOP MESSAGE TYPES 115

knowledge of these different types of messages. However, in practice, a knowl-
edge of the different message types can be useful when debugging a CORBA
application, particularly if the CORBA vendor product can print low-level di-
agnostics about the messages that are being sent and received.

The first 4 bytes of every GIOP message contain the letters G-I-O-P. This
acts as a “magic number” that identifies the message as being in GIOP format.

The GIOP message types are:Request, Reply, Fragment, CancelRequest,
CloseConnection, MessageError, LocateRequestand LocateReply. The fol-
lowing subsections discuss each of these message types.

11.3.1 Request and Reply Messages

As might be expected,RequestandReplymessages are used to send requests
from a client to a server and replies back from the server to a client, respec-
tively.

11.3.2 LocateRequest and LocateReply Messages

A LocateRequestmessage is like a “ping” message that asks: “Is the object
there?”. The reply is sent back in aLocateReplymessage. CORBA introduced
these messages to make its GIOP redirection mechanism more efficient, as will
be discussed in Section11.4.

11.3.3 Fragment Messages

If a Requestor Replymessage is very large then the CORBA runtime system
might decide to transmit it in several pieces rather than as one monolithic mes-
sage. In such cases, the first piece is sent as a normalRequestor Replymessage,
but a flag in the header of the message indicates that there are more pieces to
follow. The remaining pieces are transmitted asFragmentmessages.3

A CORBA product isnot obliged to split large messages into smaller frag-
ments, but it has theoption of doing so. If a CORBA product is capable of
sendingFragmentmessages then typically a value in a runtime configuration
file specifies the maximum size of an unfragmented message. Regardless of
whether or not a CORBA product cansendfragmented messages, it is obliged
to be able toreceivefragmented messages.

3 Support for fragmentation ofRequestandReplymessages was introduced in GIOP 1.1. In
addition, support for fragmentation ofLocateRequestand LocateReplymessages was added in
GIOP 1.2.

116 CHAPTER 11. ON-THE-WIRE PROTOCOLS

11.3.4 CancelRequest Messages

A CORBA client may specify a timeout value when making a remote call. If
the client does not receive aReplymessage before the specified timeout has
occurred then the CORBA runtime system in the client gives up waiting for
theReplymessage and instead throws aTIMEOUTexception back to the client
application code. The CORBA runtime system in the client may also (but is
not obliged to) send aCancelRequestmessage to the server, to let the server
know that the client will ignore aReplymessage if one is later sent.

The CORBA runtime system in the server can use theCancelRequestmes-
sage as a hint to discard the previously-receivedRequest. However the server
can ignore this hint and, in fact,will ignore it if the server has already started
dispatching the previously receivedRequestmessage. This is because the
CORBA runtime system in the server cannot know how to “cancel” partially-
executed application-level code in the body of an operation.

11.3.5 CloseConnection Messages

CORBA allows idle socket connections to be closed. If a connection from a
client to a server is closed then a new connection can be opened transparently
if, later on, the client makes more calls to the server. This closing of idle socket
connections enables a CORBA server to scale up to deal with thousands, or tens
of thousands of interactive clients.

CORBA needs to guard against the following possibility. A client’s socket
connection to a server might have been idle for some time and so the server
decides to close the socket connection. However, just as the server is about
to close the connection, the client sends a request to the server. If the client’s
sending of the request overlaps with the server’s closing of the socket then the
client might think that the server process had crashed. To prevent this scenario
from occurring, a server process sends aCloseConnectionmessage to the client
immediately before closing the socket connection. When the client receives
this message, it assumes that the server will ignore any requests that the client
had recently sent but for which it had not yet received replies. Because of
this, the client would (transparently) open a new connection to the server and
re-send the requests.

11.3.6 MessageError Messages

If a CORBA application receives a message that is not in GIOP format then
it sends back aMessageErrormessage to say “You sent me garbage!” This
message should not normally be sent if a CORBA client is communicating

11.4. GIOP REDIRECTION 117

with a CORBA server (unless there areseriousbugs in the CORBA product(s)
being used).

You can force a CORBA server to send aMessageErrormessage by get-
ting a non-CORBA application to send a message to the CORBA server. For
example, if you know which port a CORBA server is listening on then you can
connect to the server withtelnet . When you type something intotelnet
and hit the ENTER/RETURN key, the non-GIOP message will be sent to the
CORBA server, and the CORBA server should send aMessageErrormessage
back (and probably close the connection). Withintelnet , you will see the
letters G-I-O-P followed by some non-printable characters (which is the rest of
the very shortMessageErrormessage).

11.4 GIOP Redirection

When a client sends aRequestmessage to a server, it receives back aReply
message. The header of theReplymessage indicates if it is:

1. A “normal reply”. In this case the body of the reply containsinout /out
parameters and the return value, if any.

2. An “exception reply”. In this case the body of the reply contains a
CORBA exception. When the CORBA runtime system in the client re-
ceives such a reply, it unmarshals the exception and re-throws it so that
the calling code can catch it.

3. A“redirection reply” (actually calledLOCATIONFORWARDin CORBA
terminology). This tells the client that the target object does not live
in the server process but rather lives somewhere else. The body of this
reply contains an IOR that redirects the client to where the object really
resides. The CORBA runtime system in the client thentransparently
resends its message using the new IOR. Furthermore, the client sends all
future requests using the new IOR. In effect, the redirection occurs for
only the first request; subsequent requests go directly to the target object.

The redirection reply message is used by CORBA vendors to implement an
implementation repository(IMR), which is discussed in Chapter7. IMRs add
a lot of flexibility to CORBA, but there ispotentiallya significant overhead
to be paid for the initial redirection. I now discuss this overhead and an opti-
mization that reduces it. Let us assume that a client’s first request to an object
contains asequence<octet> parameter that is several megabytes large (the
data might be a digitized image or a large sound file). When the client receives

118 CHAPTER 11. ON-THE-WIRE PROTOCOLS

the redirection reply, it will have toretransmitthe multi-megabyte request us-
ing the new IOR. Obviously, having to transmit such a large request twice
would be a waste of bandwidth. For this reason, CORBA defines theLocate-
RequestandLocateReplymessages (discussed in Section11.3.2). A Locate-
Requestmessage is a very compact “ping”-style message that asks: “Is the
object there?”. The reply is sent back in aLocateReplymessage. The intention
is that the CORBA runtime system in a client application will (transparently)
send aLocateRequestmessagebeforesending the first “real” request. This en-
sures that if a redirection occurs then the redirection will be dealt with before
any (potentially large) “real” requests are transmitted.

Use ofLocateRequestmessages is an optional optimization. Some CORBA
products (especially older ones)neversendLocateRequestmessages. Some
other CORBA productsalwayssend aLocateRequestmessage before the first
“real” invocation. It is possible to imagine a CORBA product that is imple-
mented so it normally sends aLocateRequestmessage but optimizes it away if
the first “real” request is quite small. However, it is unlikely that many CORBA
products are implemented this way because the performance gain to be made
from optimizing away “unnecessary”LocateRequestmessages is insignificant
in real-world deployments.

11.5 Active Connection Management (ACM)

The CORBA GIOP protocol infrastructure allows idle connections between a
client and server to be closed, and transparently re-opened if the client later
wishes to send another request to the server. This allows CORBA implementa-
tions to optimize their usage of network resources. TheCloseConnectionGIOP
message (discussed in Section11.3.5) provides the low-level infrastructure re-
quired for this. The CORBA standard does not define anyterminologyfor this
ability to close idle connections. Because of this lack of CORBA-provided ter-
minology, some vendors have defined their own terminology for this capability.
Both Orbix and Orbacus use the termactive connection management(ACM)
to refer to the automatic closing of idle socket connections. Other CORBA
products might use different terminology for the same concept.

CORBA does not requirethat a product implement ACM; rather, it is an
optional capability, though good-quality, modern CORBA products should im-
plement it. Neither does CORBA specify what heuristics should be used to
close idle connections. For example, in Orbacus, entries in a configuration file
are used to specify that connections should be closed if they have been idle for
a specified amount of time. Orbix uses a different mechanism: configuration

11.6. SERVICE CONTEXTS 119

entries specify the maximum number of open connections; once this limit has
been reached, Orbix closes the connection that has been idle for the longest
period of time. Other CORBA products may employ different heuristics for
closing idle connections.

11.6 Service Contexts

The concept of aservice contextis easy to understand. However, the terminol-
ogy is not very intuitive. Thecontextpart of the name arises because a service
context is used to pass extra “contextual” information with request and reply
messages. Theservicepart of the name arises because the first uses of service
contexts were to help implement some of the CORBA Services, such as the
Security Service and Object Transaction Service (OTS). However, documented
APIs mean that service contextscanalso be used by application programmers.

module IOP {
...
typedef unsigned long ContextId ;
struct ServiceContext {

ContextId id;
sequence<octet> data;

};
...

};

Figure 11.2:IDL definition of a service context

The IDL definition of a service context is shown in Figure11.2. As can be
seen, a service context is simply astruct that contains binary data and an
integer value. The integer value is an identifier that specifies how the binary
data should be interpreted. For example, one integer value specifies that the
binary data contains information used by OTS; another integer value specifies
that the binary data contains information used for security; and so on. Organi-
zations can contact the OMG to request unique integer values that they can use
for service contexts specific to their own needs.

The header of eachRequestand Replymessage contains a sequence of
service contexts. Unless an application makes use of, say, OTS, it is likely
thatmostmessages sent and received by the application will contain an empty
sequence of service contexts. An application can use aportable interceptor
(Chapter14) to add a service context to outgoing messages and can interrogate

120 CHAPTER 11. ON-THE-WIRE PROTOCOLS

incoming messages to see if they contain a service context that corresponds to
a specified integer identifier. In this way, if an application receives a service
context that it is not expecting then the service context is simply ignored.

11.7 Codeset Negotiation

Codesetis an abbreviation ofcoded character set. Examples of codesets in-
clude ASCII and Unicode. In the early versions of CORBA, ISO Latin 1 (which
is US ASCII extended with accented characters) was the hard-coded codeset
used to transmit parameters of typechar or string . However, CORBA
has matured to supportwide characters(IDL typeswchar andwstring).4

CORBA has also matured so that the codesets used to transmit characters and
wide characters are no longer hard-coded, but rather are negotiated when a
client application establishes a connection to a server. As might be expected,
this is calledcodeset negotiation. Codeset negotiation is achieved through the
following steps:

1. An object reference (Chapter10) exported from a server contains “con-
tact details” (for example, host, port and object key), but also contains
details of which codesets can be used to communicate with the object.
In particular, the object reference specifies thenativechar andwchar
codesets used by the server applicationplusa sequence of codesets that
can be used to transmitchar or string types, and another sequence
of codesets that can be used to transmitwchar or wstring types.5

The codesets in the sequences are calledconversioncodesets because
they are codesets for which the CORBA runtime system in the server
application can convert to and from its native codeset.

2. When a client application imports an object reference, it compares the
codesets in the object reference to the codesets that its own CORBA run-
time understands. If the CORBA runtime in the client cannot find any
overlap between its own codesets and those of the server then it throws
an exception to indicate that it cannot communicate with the object. As-
suming that it can find codesets common to both itself and the server, the
CORBA runtime system in the client decides which codesets it will use
for communication.

4 A codeset is said to bewideif every character is represented by a 16-bit or 32-bit fixed-length
number.

5 To be pedantic, an object reference contains integers that uniquely identify codesets rather
than the codesets themselves.

11.8. BIDIRECTIONAL GIOP/IIOP 121

3. When a client sends its firstRequestmessage to the server, it uses a
service context (Section11.6) to tell the server which codesets it has
chosen for communication. These are called thetransmissioncodesets.

11.8 Bidirectional GIOP/IIOP

The specification of GIOP/IIOP states that it is aunidirectionalprotocol. A
client transmits a message on achannel(GIOP terminology for what is known
as asocketin IIOP) to a server and the server transmits its reply on thesame
channel. Thissoundslike bidirectional communication since messages are
transmitted in both directions. However, the reason why it is said to beuni-
directional is that request messages can be transmitted in only one direction.
GIOP doesnotallow a server to transmit a request to a client on the same chan-
nel that the client uses to transmit requests to the server. This is illustrated in
Figure11.3. The client opens a channel to a server in order to invoke upon
obj1, and the client passes a reference to acallback object (obj2) as a para-
meter to an invocation.6 Later, if the server wants to invoke an operation on
this callback object then GIOP doesnot allow the server to send its request on
the already-open channel. Instead, the server must open a new channel to the
client.

IOR2

client with
callback object

IOR1

obj2

obj1

requests for obj1

replies for obj1

server

requests for obj2

replies for obj2

Figure 11.3:Channel usage in (unidirectional) GIOP

When GIOP was being defined, there was some debate within the OMG
over whether GIOP should be a unidirectional or bidirectional protocol. How-
ever, it was decided that GIOP should be a unidirectional protocol and almost
everybody has regretted this decision ever since. In particular, unidirectional
protocols have two drawbacks when callback objects are used:

6 Callback objects are discussed in Section1.4.2.2on page10.

122 CHAPTER 11. ON-THE-WIRE PROTOCOLS

requests for obj1

replies for obj1

requests for obj2

replies for obj2

IOR2

obj1

server

client with
callback object

IOR1

obj2

Figure 11.4:Channel usage in bidirectional GIOP

1. Opening a second channel is wasteful of network resources.

2. In some real-world deployments, there may be some firewalls between
the client and server applications. Although it may be possible for the
client to successfully traverse firewalls to establish a connection to a
server, it is sometimes impossible to establish anew connection from
the server back to the client.

To work around these problems, a bidirectional enhancement to the GIOP/IIOP
specification (illustrated in Figure11.4) was added to CORBA 2.4.

Chapter 12

The corbaloc and
corbaname URLs

12.1 Introduction

URLs used on the world wide web (WWW) begin with the name of a protocol,
followed by ":" , for example,"http:" , "ftp:" or "file:" . A stringi-
fied object reference (Section3.4.2on page34) begins with"IOR:" so this
also looks similar to a URL.

In early versions of CORBA, the only kind of string parameter that could be
passed tostring to object() (Section3.4.2on page34) was a stringified
object reference. CORBA has now matured to allowother URL-like strings
to be passed as parameters tostring to object() . A CORBA product
may optionally support the"http:" , "ftp:" and"file:" formats. The
semantics of these is that they provide details of how to download a stringified
IOR (or, recursively, download another URL that will eventually provide a
stringified IOR).

Although support for"http:" , "ftp:" and"file:" is optional, all
CORBA products must support"corbaloc:" and"corbaname:" , which
are two URLs defined by the OMG. The purpose of these is to provide a human
readable/editable way to specify a location where an IOR can be obtained.

12.2 Thecorbaloc URL

Some examples ofcorbaloc URLs are shown below:

123

124 CHAPTER 12. THECORBALOCAND CORBANAMEURLS

corbaloc:iiop:1.2@host1:3075/NameService
corbaloc:iiop:host1:3075,iiop:host2:3075/NameService

The first URL specifies that an IOR can be obtained by using version 1.2
of the IIOP protocol to send aLocateRequestmessage (Section11.3.2 on
page115) with parameter"NameService" to port 3075 on hosthost1 .

The second URL is different in two ways. First, by omitting"1.2@" , it
uses the default version (1.0) of the IIOP protocol. Second, the URL specifies
two <host>:<port> addresses rather than one. In general, any number
of <host>:<port> addresses can be specified, separated by commas. This
second form is used to provide fault tolerance: theLocateRequestmessage will
be sent to one of the addresses in the list; if that<host>:<port> cannot be
contacted then another address in the list will be tried, and so on.

Many parts of thecorbaloc URL have default values:

• The default protocol isiiop .

• If the protocol isiiop then the defaultversionof IIOP that is used is
1.0. It is advisable to specify the most recent version of IIOP that is
understood by both the client and server application. This is because
more modern versions of IIOP tend to have better capabilities that might
make client-server interaction more efficient.

• The default port number is 2809. This is the port that the Internet As-
signed Numbers Authority (www.iana.org) has assigned for use with
corbaloc .

The CORBA specification currently specifies two protocols that can be
used incorbaloc URLs. One protocol isiiop , which has already been
discussed. The other protocol is calledrir , which seems like a strange name
until you realize that it is an acronym forresolve initial references. Unsur-
prisingly, this protocol specifies that an object reference should be obtained by
calling the resolve initial references() operation (Section3.4.1
on page33), passing the specified name as a parameter. For example, the
corbaloc URL below specifies that an IOR should be obtained by calling
resolve initial references("NameService") :

corbaloc:rir:/NameService

One benefit of therir protocol is that it allowsstring to object() to
subsume the functionality ofresolve initial references() . For ex-
ample, instead of an application being hard-coded to find the Naming Service
by callingresolve initial references("NameService") , an ap-
plication can now be hard-coded to find the Naming Service by obtaining a

12.3. THECORBANAMEURL 125

string from a command-line argument or a configuration file and passing this to
string to object() . If the string happens to be"corbaloc:rir:/
NameService" then it is just as if the programmer had usedresolve
initial references() , but now there is the flexibility for the string pa-
rameter to be a stringified IOR or acorbaloc URL that uses theiiop pro-
tocol. In this way, applications have some extra flexibility in how they find a
CORBA Service.

The rir protocol is not used often incorbaloc URLs. However, it is
used more commonly incorbaname URLs, which I now discuss.

12.3 Thecorbaname URL

A corbaname URL is acorbaloc that specifies how to contact the Naming
Service, followed by"#" and then a name within the Naming Service. Some
examples are shown below:

corbaname::foo.bar.com:2809/NameService#x/y
corbaname::host1,:host2,:host3/NameService#x/y
corbaname:rir:/NameService#x/y

Passing of the above strings as a parameter tostring to object() causes
the Naming Service to be located andresolve str() to be invoked to ob-
tain an IOR from the Naming Service. As the above examples illustrates, a
corbaname URL can use either theiiop or rir protocols to locate the
Naming Service.

12.4 Architectural Support for corbaloc

12.4.1 Client-side Support forcorbaloc

The string to object() operation has built-in support forcorbaloc
andcorbaname URLs:

• If the parameter tostring to object() starts with"IOR:" then
the operation treats it as a stringified object reference and builds a corre-
sponding proxy.

• If the parameter starts with"corbaloc:rir" then the operation calls
resolve initial references() and passes the specified name
as a parameter.

126 CHAPTER 12. THECORBALOCAND CORBANAMEURLS

• If the parameter is acorbaloc URL that uses theiiop protocol then
the operation opens a socket connection to the specified host and port,
and sends aLocateRequestmessage (Section11.3.2), using the specified
name as theobject key(Section10.2.1on page107) in the header of
the message. The IOR embedded in the returnedLocateReplymessage
is used as the return value ofstring to object() . An important
point to note is thatcorbaloc is built on top ofexistinglow-level GIOP
messages so the OMG didnot have to define a new version of GIOP to
supportcorbaloc URLs.

• If the parameter tostring to object() is a corbaname URL
then the embeddedcorbaloc details are use to locate a Naming Ser-
vice. Thenstring to object() invokesresolve str() on the
Naming Service, passing it the string after the embedded"#" as a para-
meter. The IOR returned fromresolve str() is used as the return
value ofstring to object() .

12.4.2 Server-side Support forcorbaloc

CORBA doesnot standardize the server-side support forcorbaloc URLs,
nor even theterminologyfor this server-side support. This means that CORBA
products provide proprietary mechanisms, often with proprietary terminology.
For example:

• The Orbix implementation repository has built-in, server-side support for
corbaloc URLs, and this is referred to asnamed keys. A named key is
a mapping from thenamecomponent in acorbaloc URL to a stringi-
fied IOR. Thenamed key sub-commands of theitadmin administra-
tion utility are used tocreate , show, list anddelete named keys.
By default, the Orbix implementation repository listens on port 3075 so
corbaloc URLs should be formatted as shown below:

corbaloc::<host-of-IMR>:3075/<name>

When theitconfigure utility is used to set up an Orbix domain,
named keys are automatically created for whatever CORBA Services are
added to the domain. For example, if the domain has a Naming Service
then a named key calledNameService is created.

For a long time, Orbix did not expose APIs for embedding server-side
corbaloc support in normal server applications. Orbix 6.1 Service
Pack 1 is the first version of Orbix to expose these APIs.

12.5. BOOTSTRAPPING INTEROPERABILITY PROBLEMS 127

• Orbacus provides some proprietary APIs (in theBootManager inter-
face) that can be used by developers to embed server-sidecorbaloc
support in their own server applications. These APIs are used by the
Orbacus implementation repository, which looks upname→stringified-
IORmappings in a configuration file.

• TAO provides proprietary APIs that have different names, but similar
semantics, to those of Orbacus.

• OmniORB server-side support forcorbaloc URLs relies upon plac-
ing objects into a specific, predefined POA. OmniORB also provides
a prewritten server application calledomniMapper that listens on a
specified port number and looks upname→stringified-IORmappings in
a configuration file.

As can be seen, each CORBA product has its own different “look and feel” for
server-side support ofcorbaloc URLs. Because of this, there isno portable
way for a CORBA server to use acorbaloc URL to advertise one of its
own objects. Developers concerned with writing portable CORBA applica-
tions should usecorbaloc URLs only for CORBA Services, for example,
the Naming Service, Notification Service, Trading Service and so on.

12.5 Bootstrapping Interoperability Problems

One obvious requirement for interoperability between different CORBA prod-
ucts is that they must be able to speak the same on-the-wire protocol (IIOP).
However, that by itself it not sufficient. Another, less obvious requirement for
interoperability is for one CORBA product to be able tofind, say, the Naming
Service or the Notification Service of another CORBA product. For example,
how can an Orbix clientfind (connect to) the Naming Service of an Orbacus
installation. This is often called a bootstrapping problem. Thecorbaloc and
corbaname URLs were invented to address such bootstrapping issues, as I
now discuss.

A CORBA application connects to a CORBA Service—for example, the
Naming Service, Transaction Service, Notification Service, and so on—by call-
ing resolve initial references() and passing the name of the de-
sired service as a parameter. The CORBA specification doesnot specify how
resolve initial references() works (that is an implementation de-
tail), but in most CORBA products this operation looks in a configuration file

128 CHAPTER 12. THECORBALOCAND CORBANAMEURLS

to find aname-of-CORBA-service→stringified-IORmapping1 and then passes
the stringified IOR as a parameter tostring to object() . These map-
pings are normally set up during the installation and configuration of a CORBA
product. To configure, say, Orbix to use an Orbacus Naming Service is a mat-
ter of obtaining a stringified IOR of the Orbacus Naming Service (typically
from the Orbacus configuration file) and copying this into the Orbix config-
uration file. Then the next time an Orbix client callsresolve initial
references("NameService") , the client will be directed towards the
Orbacus Naming Service. This technique works fine, but it is a bit cumber-
some because stringified IORs are not human readable. However, with the
introduction ofcorbaloc URLs, the technique becomes much easier. Now,
instead of copying a stringified IOR of the Orbacus Naming Service into the
Orbix configuration file, it is sufficient to copy acorbaloc URL into the Or-
bix configuration file. The fact thatcorbaloc URLs are easy to read (and
edit) by humans makes it more feasible for an organization to use several dif-
ferent CORBA products.2

Sometimes, practical or organizational issues may make it awkward to up-
date a configuration file with a stringified IOR orcorbaloc URL for, say, the
Naming Service of another CORBA product. To work around this, the OMG
defined two standard command-line options that all CORBA products must
support.3

The first command-line option takes the form:

-ORBInitRef <name>=<value>

An example is shown below:

-ORBInitRef NameService=corbaloc::host1:3075/NameService

The<value> in <name>=<value> is a stringified IOR or URL that is used
if resolve initial references() is called with"<name>" passed
as a parameter. This command-line argument takes precedence over any cor-
responding information in the CORBA product’s configuration file. You need

1 For example, the entry in the Orbacus configuration file is calledooc.orb.service
. <service >. The corresponding entry in the Orbix configuration file is calledinitial
references: <service >:reference .

2 It is rare for an organization todeliberately decideto use several CORBA products. However,
several CORBA products may make their way into an organization if different departments or
development teams make independent choices about which middleware technology they will use,
or if the development of CORBA applications is outsourced to other organizations.

3 When a CORBA application callsORBinit() , it passes command-line arguments as a
parameter toORBinit() . This provides the mechanism by which command-line arguments are
communicated to the CORBA runtime system.

12.5. BOOTSTRAPPING INTEROPERABILITY PROBLEMS 129

to specify this command-line optioneachtime you run an application, so reg-
ular use of it can get somewhat tedious. However, this command-line option
is useful if, for example, restrictive file permissions prevent you from modify-
ing the configuration file of a CORBA installation. It can be useful also when
trouble-shooting a connectivity problems in a network.

The second command-line option takes the form:

-ORBDefaultInitRef <URL-up-to-but-not-including-final-"/">

Some examples are shown below:

-ORBDefaultInitRef corbaloc:iiop:1.2@host1:3075
-ORBDefaultInitRef corbaname::host1/NameService#x/y

A call to resolve initial references("<name>") , results in
"/<name>" being appended to the string provided by the command-line ar-
gument after-ORBDefaultInitRef ; the result of this string concatenation
is then passed as a parameter tostring to object() .

The intention of-ORBDefaultInitRef is that a user can set up a cen-
tralized store ofname→ IOR mappings and then applications can be started
with a single-ORBDefaultInitRef command-line argument that points
to this centralized store. This is usually more convenient than starting many
applications, each with several-ORBInitRef command-line arguments.

You need to specify the-ORBDefaultInitRef command-line option
eachtime you run an application so, just as with-ORBInitRef , regular use
of it can get tedious. In general, it is usually more convenient to create or mod-
ify a configuration file for a CORBA installation than to use these command-
line options every time you run a CORBA-based application.

If both -ORBInitRef and-ORBDefaultInitRef command-line ar-
guments are used then the-ORBInitRef arguments take precedence.

130 CHAPTER 12. THECORBALOCAND CORBANAMEURLS

Chapter 13

Current Objects

13.1 The Concept of Thread-local Data

The UNIX getpid() function returns an integer “process identifier” that
uniquely identifies the process. Likewise, libraries of threading primitives
provide a similar function, perhaps calledget thread id() , that returns
an integer to uniquely identify the current thread. The name of this function
varies across different threading packages. A common coding technique used
in multi-threaded programs is to use a lookup table to provide a mapping from
a thread identifier to associated data. This technique allows a programmer to
associate a different piece of data with different threads. The technique is often
calledthread-local dataor thread-specific data.

13.2 Current Objects Provide Thread-local Data

CORBA uses the termCurrent to mean thread-local data.1 Actually, CORBA
defines a few different types of current object. For example, there is one for
security, another for transactions, and yet another for request dispatching. All
of the current interfaces are defined in IDL, and they all inherit from an empty
base type called CORBA::Current.

As an example,PortableServer::Current inherits fromCORBA::

1 To be pedantic,Current is data associated with arequestrather than athread. However, since
a request is executed within the context of a thread, the concept of request-local data is usually
synonymous with thread-local data, and thinking of current as being thread-local data is “accurate
enough” for most discussions.

131

132 CHAPTER 13. CURRENT OBJECTS

module CORBA {
local interface Current { };
...

};
module PortableServer {

...
typedef sequence<octet> ObjectId;
local interface Current : CORBA::Current {

exception NoContext { };
POA get POA() raises(NoContext);
ObjectId get object id () raises(NoContext);

};
...

};

Figure 13.1:IDL definition of Current types

Current and is used to access information about the target object for the
request being dispatched by the current thread. The definitions of these types
are shown in Figure13.1.

Current objects are accessed by specifying the relevant name as a para-
meter toresolve initial references() , which is discussed in Sec-
tion 3.4.1 on page33. For example, thePortableServer::Current
singleton object is calledPOACurrentbecause you gain access to it by passing
"POACurrent" as a parameter toresolve initial references() .
Use ofPOACurrentis required when implementing servers with the “default
servant” model (Section5.6.4on page55), and is optional with the other POA
models.

Chapter 14

Portable Interceptors

Early CORBA products were monolithic: when you bought a CORBA product
you could use whatever capabilities were built into the product, but you (or
third party companies) had little opportunity to extend the range of capabilities
that it offered. CORBA has since matured to provide a “plug-in” architecture
that allows people to add new code to a CORBA product. A first version of this
plug-in architecture was made available in CORBA 2.2 and it was calledinter-
ceptors. The name came about because the plug-ins could intercept some of the
ORB functionality to modify the ORB’s behavior. Unfortunately, the CORBA
2.2 interceptors were under-specified and this resulted in a non-portable API
for their use. CORBA 2.4 provided a more complete definition and the result
is now known asportable interceptors.

There are two types of portable interceptors: IOR interceptors and request
interceptors. I provide a brief overview of each in turn in the following sec-
tions. A more substantial and very readable overview of portable interceptors
can be found in thePure CORBAbook [Bol01].

14.1 IOR Interceptors

An IOR interceptor is called when an IOR is being created. The IOR intercep-
tor can find out which policies were used in the object’s POA (see Chapter6
for a discussion of POA policies) and can use this information to decide if it
wants to embed an extraTaggedComponent (Section10.2.3on page108)
into the IOR. For example, whether or not an object can take part in distributed
transactions is determined by the use of a particular POA policy. If this POA

133

134 CHAPTER 14. PORTABLE INTERCEPTORS

policy is used then an IOR interceptor that is bundled as part of a transactional
service will add a correspondingTaggedComponent to the IOR.

14.2 Request Interceptors

There are two types of request interceptor: one that deals with the client-side
mechanics of sending a request and receiving a reply, and another that deals
with the server-side mechanics of receiving a request and sending a reply. Ob-
viously, if an application is both a client and a server then it could use both a
client-side and serve-side interceptor. Unsurprisingly, the APIs for both client-
side and server-side request interceptors have a similar look and feel.

A request interceptor is called at various points along the transmission of
request and reply/exception messages. An interceptor may do the following:

• Examine the parameters of the request/reply/exception message that is
being transmitted. An interceptor that does this and uses theDynAny
APIs (Section15.3on page140) could write diagnostic messages to a
log file for all incoming/outgoing messages.

• A server-side interceptor can find out the object id (Section5.6.1 on
page51) and POA (Section5.5on page47) of the target object. It could
use this information to keep track of when the objects have been accessed
by clients and then garbage collect objects that have not been accessed
in, say, the last 20 minutes.

• Add a service context (Section11.6on page119) to an outgoing message
or extract a service context from an incoming message.

• Examine theTaggedComponent s of the target object. For example, a
client-side interceptor that is used as part of an transactional service may
check to see if the target object can take part in a transaction and, if so,
add a transactional service context to the outgoing request.

14.3 The PICurrent Object

The portable interceptors specification defines aCurrentobject (Chapter13),
which is calledPICurrent because it is accessed by passing"PICurrent"
as the parameter toresolve initial references() (Section3.4.1on
page33). The main purpose of the PICurrent object is to provide a way for

14.3. THE PICURRENT OBJECT 135

service contexts (Section11.6 on page119) to be communicated between a
portable interceptor and application-level code.

136 CHAPTER 14. PORTABLE INTERCEPTORS

Chapter 15

Meta-information
Programming

15.1 What is Meta-information Programming?

In many computer languages, when you write a program, you know at com-
pilation time what data-types you will manipulate and the compiler performs
strong type checking to ensure that you access those data-types correctly. Some
programming languages defer type checking until runtime. In such languages,
there is somemeta information(also known asruntime type information) asso-
ciated with objects; the runtime system of the language uses this information
to check that a program accesses objects in a legal way. Some languages that
use runtime type checking even allowprogrammersto inspect an object’s meta
information in order to find out what operations the object has and the names
and types of its instance variables. This capability is often calledintrospection
or reflection.

The Smalltalk language is famous for its runtime type checking. Java
provides compile-time type checking but also provides APIs for thejava.
lang.Class type that allow runtime type checking (and introspection) to be
performed. In contrast, the C programming language does not provide meta
information and C++ provides only very limited support for it with itsdynamic
castcapability.

137

138 CHAPTER 15. META-INFORMATION PROGRAMMING

15.1.1 Uses of Meta-information Programming

Most CORBA programs are written with compile-time knowledge of the IDL
data-types that they will manipulate and the IDL interfaces that they will im-
plement and/or invoke upon. However, CORBA also maintains meta informa-
tion about objects and data-types, and makes it possible to write programs that
make use of such meta information. This capability of CORBA is rarely used,
but it does make it possible for some very important types of application to be
written. For example:

• It is common for an organization to have some existing (“legacy”) ap-
plications that were built with one middleware technology, want to build
new applications with a different middleware technology, and to some-
how connect the old and new applications to each other. The software
that connects between different middleware technologies (or connects
between different on-the-wire protocols) is usually called abridgeor a
gateway.

The basic principle of a gateway is to accept an incoming request using
the on-the-wire protocol of one technology, perform data-type transla-
tion on parameters and then send a similar request using the on-the-wire
protocol of the other technology. Writing a gateway for a specific set of
APIs is usually tedious, highly repetitive work and if the APIs change
then you have to rewrite the gateway for the new APIs. However, if the
middleware technologies that are being bridged provide meta informa-
tion then it usually possible to implement agenericgateway that can
acceptany incoming request using the on-the-wire protocol of one tech-
nology, use meta information to determine the quantity and types of pa-
rameters in the request, convert these parameters into the format of the
other technology and then send a similar request using the on-the-wire
protocol of this second technology.

A generic gateway is usually a bit slower than a type-specific gateway,
but it has the big advantage that you have to implement just one generic
gateway and it can be used to connect systems foranyset of APIs. Some
companies developed gateways from CORBA to DCE (an older middle-
ware technology) and several CORBA vendors sell COM-to-CORBA or
.NET-to-CORBA gateways. These gateways are usually built as generic
gateways that utilize meta information.

• A debugger for a traditional language usessymbol table information
(which is a form of meta information) embedded in executables to dis-
play variables in a human-readable format rather than just as blobs of

15.2. TYPECODES AND THE INTERFACE REPOSITORY 139

binary data. If a middleware technology provides meta information then
this makes it possible for companies to develop debugging tools that are
better tailored to the needs of that middleware technology. It also makes
it possible to develop some other useful tools that support the software
development process. For example, when writing a CORBA server, it is
useful to have asimulation clientapplication that can be used to perform
ad-hoc testing of the server, and vice versa. Some companies sell tools
that make use of meta information to produce simulation clients/servers
with little, if any, coding effort.

CORBA’s support for meta-information programming is spread over sev-
eral distinct, but complementary, APIs. These APIs are discussed in the fol-
lowing sections.

15.2 TypeCodes and the Interface Repository

CORBA uses theCORBA::TypeCode type to represent meta information.
The kind() operation provided byCORBA::TypeCode returns an enum
value that specifies if the TypeCode represents one of the built-in types (long ,
boolean and so on) or a user-defined type (struct , union , interface
and so on). If the TypeCode represents a user-defined type then more oper-
ations can be invoked upon it to determine the names and TypeCodes of the
members of astruct or union and so on.

A TypeCode provides the meta information required by the ORB runtime
system to determine how the bytes within a raw chunk of memory are laid out
as the fields/components of a compound data-structure. However, the infor-
mation provided by TypeCodes isinsufficient, by itself, for general-purpose,
meta-information programming. For example, a TypeCode does not specify
the signatures of operations that are provided by an interface. Neither does
a TypeCode provide a list of all the types (and nested modules) that are de-
clared within a module. CORBA complements TypeCodes with theInterface
Repository(IFR), which stores this more general meta information.

You can think of the IFR as being a database of meta information about
IDL types. This database has a CORBA server “wrapper” around it; it is this
wrapper that is called the IFR. The IDL interfaces of the IFR provide opera-
tions for storing meta information in the IFR and also operations for querying
the contents of the IFR. The IFR organizes the meta information in a manner
similar to how the internals of a compiler organize information in a parse tree.
Because of this, querying meta information in the IFR is similar to traversing a
parse tree in a compiler.

140 CHAPTER 15. META-INFORMATION PROGRAMMING

Although CORBA specifies the IDL interface of the IFR, CORBA does
not specifyhowadministration of the IFR is performed. Typically, a CORBA
product provides a proprietary command-line tool that parses an IDL file and
invokes operations on the IFR to store the parsed information in the IFR. The
name of this command-line tool varies from one CORBA product to another.
With some CORBA products, this tool is a stand-alone utility; with other
CORBA products this functionality is provided as a command-line option on
the IDL compiler.

The information provided by the IFR subsumes the information provided
by TypeCodes. However, each call to the IFR is a remote call so it incurs the
performance overhead of network latency. In contrast, querying the informa-
tion in a TypeCode involves just a local operation call, so this is much faster. A
common way to structure a meta information program is to use the APIs of the
the IFR to navigate down to the parse-tree node of a particular type and then
obtain a TypeCode that allows the details of that type to be examined much
more efficiently with just local operation calls.

15.3 Theany and DynAny Types

One of the IDL built-in types is calledany . This serves a similar purpose to
thevoid * type in C/C++ or thejava.lang.Object type in Java: it is a
way to pass around data when you do not have any compile-time knowledge
of the type of the data. Of course, when doing this you need to have some
way of finding out at runtime what is the type of the data. Internally, anany
contains the raw dataplusaCORBA::TypeCode (Section15.2) that specifies
the data’s type.

Theany type is used about as infrequently as thevoid * type is used in
C/C++ or java.lang.Object is used in Java. In other words, it is used
extensively for some specialized programming tasks, but is irrelevant for many
other, more general-purpose tasks.

Whenany is used in IDL, it is often used to define a type that holds a name
and arbitrary value, as shown in Figure15.1.

struct NameValuePair {
string name;
any value;

};

Figure 15.1:Use of typeany to define a name and value

15.4. DYNAMIC INVOCATION INTERFACE (DII) 141

The IDL compiler generates operations that can be used to insert a user-
defined type into anany , to query the type of data inside anany , and a type-
safe way to extract data of a specified type from anany . These operations
can be used by applications that have been compiled with the stub code (Sec-
tion 1.4.5on page13) of an IDL file. However, these APIs for inserting values
into, and extracting values from, anany can be usedonly by applications that
have been compiled with the stub code of the type that is embedded inside the
any .

If an application wants to manipulate data embedded inside anany without
being compiled with the relevant stub code then the application must convert
theany into aDynAny , which is the base type of a hierarchy oflocal in-
terfaces (Section9.1 on page95). There are sub-types ofDynAny for each
IDL construct. For example, there are types calledDynStruct , DynUnion ,
DynSequence and so on.

The operations on theDynAny interfaces allow a programmer to recur-
sively drill down into a compound data-structure that is contained within the
DynAny and, in so doing, decompose the compound type into its individual
components that are built-in types. Operations on theDynAny interface can
also be used to recursively build up a compound data-structure from built-in
types.

A DynAny object can be converted to anany , and back again. This is
important because many CORBA APIs take parameters of typeany instead of
DynAny .

15.4 Dynamic Invocation Interface (DII)

The dynamic invocation interface(DII) is a set of APIs that allows a client
application to make invocations on an object reference (Chapter10) without
the client application being compiled with the stub code for either the relevant
IDL interface or the types passed as parameters. A DII-based client typically
does the following:

• The client application obtains an object reference from somewhere.

• The client can invoke theget interface() operation on the object
reference to access meta information in the IFR (Section15.2), and so
find out the signatures of operations defined for the object.

• The client uses theDynAny APIs to build up parameter values and then
converts theseDynAny objects toany objects.

142 CHAPTER 15. META-INFORMATION PROGRAMMING

• The target object reference, the name of the operation being invoked,
and a sequence of parameter values/directions are added to aCORBA::
Request pseudo-object. The specified operation is invoked by calling
invoke() on thisCORBA::Request object.

• The client examinesinout /out parameters and the return value by
using the APIs ofDynAny .

The DII APIs are used when a client is compiled without knowledge of the
IDL interfaces upon which it will make calls. This generally means that the
client application does not have much hard-coded “business logic” to dictate
what parameter values it should use when making remote calls, or even which
operations it should invoke. Instead, the remote invocations made by a DII-
based client are typically driven by some external meta-data. Two example uses
of DII-based applications—gateways and test clients—were briefly discussed
in Section15.1.1on page138. I now discuss the architecture of a DII-based
test client in slightly more detail.

When writing a CORBA server, it is useful to have asimulation clientap-
plication that can be used to perform ad-hoc testing of the server. A GUI-based
“generic” test client could be built using the DII, and it might work as follows.

• The user specifies an object reference that the test client should use. This
object reference might be obtained from the Naming Service (Chapter4)
or as a stringified IOR (Section3.4.2on page34) from a file.

• The GUI client retrieves therepository idfrom the object reference. It
then uses this type information to obtain the signatures of its operations
from the IFR. The GUI displays a menu of the operation names.

• The user selects an operation from the menu and the GUI then displays
dialog boxes to prompt the user to provide values for allin andinout
parameters. If a parameter is of a compound type then the GUI client
will use the TypeCode to recursively drill down into the type and display
dialog boxes for each component of the compound type. The compound
value is built up with the aid of theDynAny APIs.

• When the user has provided all the parameter values, the GUI client cre-
ates aCORBA::Request object and callsinvoke() upon it. When
the operation returns, the GUI displays all theout andinout parame-
ters, and the return value.

It is possible to imagine such a GUI that would record the parameter values
inputted by the user and then generate aregression testingprogram that could
be rerun independently of the interactive GUI.

15.5. DYNAMIC SERVER INTERFACE (DSI) 143

15.5 Dynamic Server Interface (DSI)

Thedynamic server interface(DSI) is often described as being the server-side
equivalent of the DII. It is a set of APIs that allows a server application to
process incoming requests on IDL interfaces for which it does not have the
relevant stub code or skeleton code. Like the DII, the DSI can be used to
build gateways or testing applications. For example, a DSI-based testing server
might accept incoming requests and assign values toinout andout parame-
ters based on values it obtains from a random number generator or a configu-
ration file/database.

144 CHAPTER 15. META-INFORMATION PROGRAMMING

Chapter 16

CORBA Messaging

The CORBA Messaging specification encompasses three separate, but comple-
mentary, topics. Each of the topics are discussed in the following sections.

16.1 Quality of Service (Policy Objects)

The first version of CORBA did not define any portable way for programmers
to specify whatquality of service(QoS) they wanted in their applications. In-
stead, many CORBA vendors provided proprietary APIs for this purpose.

Over time, CORBA has matured to provide a mechanism for programmers
to specify what QoS they want in their applications. In CORBA terminology,
a QoS value is called apolicy object. Policy objects were first introduced with
the POA specification (Section5.5 on page47). The POA specification ini-
tially defined 7 types of policy and separate operations for creating each of
these 7 kinds of policy object. The OMG realized that the addition of new
policies to CORBA would not be practical if each new policy required that a
new operation be added to an existing interface because this would create a
versioning nightmare. Instead, the Messaging specification (which was intro-
ducedafter the POA specification) defined a more general-purpose mechanism
for introducing new policies to CORBA. This mechanism involves the follow-
ing:

• The base typeCORBA::Policy is a local interface (Section9.1 on
page95) from which all policy types inherit.

• The ORBtype contains an operation calledcreate policy() that
can be used to create an instance of any of the subtypes ofCORBA::

145

146 CHAPTER 16. CORBA MESSAGING

Policy . This operation takes two parameters that specify thetypeand
valueof the policy object. For example, if thetype is RELATIVE RT
TIMEOUTPOLICY TYPE (which is an integer constant that implies
the RelativeRoundtripTimeoutPolicy subtype ofCORBA::
Policy) then thevalueexpresses the desired timeout value. Thetype
parameter is always a (typedef ’d) integer constant, and there is a
one-to-one mapping between these integer constants and subtypes of
CORBA::Policy . However, thevalue’s type varies from one (sub)type
of policy to another. Because of this, thevalueparameter is represented
as anany (Section15.3); this provides the flexibility for the embedded
value to be an integer, a string or an arbitrary IDL data-structure. Inter-
nally, create policy() uses its parameters to create an instance of
the appropriate subtype ofCORBA::Policy .

The programming steps required to create a policy object have the drawback
of being verbose, but offer two benefits.

The first benefit is that this creation mechanism is general-purpose. This
means that it can deal with more policy types (both CORBA-compliant and
vendor-proprietary policy types) that might be introduced in the future.

The second benefit concerns the fact that the use of some policy types has
the side-effect of embedding extra information in IORs (Chapter10) or service
contexts (Section11.6on page119). The fact that there is an integer constant
corresponding to each subtype ofCORBA::Policy means that this compact
integer value can be embedded inside the IORs and service contexts. Because
of this, the use of policy objects doesnot incur a significant bandwidth over-
head.

Aside from providing a general-purpose mechanism for defining policy
types, the Messaging specification also defines some specific policy types that
can be used to control the QoS for making remote calls. These policies include
the following:

• CORBA allows idle socket connections to be closed (to conserve net-
work resources) and previously-closed connections to be re-established.
The RebindPolicy type is used to specify whether or not the re-
establishing of previously-closed connections should take place trans-
parently to client applications.

• The signature of an IDL operation may be prefixed with theoneway
keyword. The intention is to specify that the operation should be invoked
asynchronously. However, early versions of CORBA did not define clear
semantics ofoneway calls and so the semantics provided by different

16.2. ASYNCHRONOUS MESSAGING INTERFACE (AMI) 147

CORBA vendors varied widely. TheSyncScopePolicy type is now
used to precisely specify the semantics ofoneway invocations.

• There are two priority policies: one to specify the priority for delivering
a request message, and another to specify the priority for delivering a
reply message.

• There are various start-time policies that can be used to prevent a re-
quest/reply message from being delivered before a specified time. There
are also various timeout policies that can be used to cancel the delivery
of a request/reply message if it cannot be delivered by a specified time.

• There are various policies that are used in conjunction with request/reply
routers (Section16.3).

The Messaging specification also defines a service context (Section11.6
on page119) that is used to propagate request- or reply-related policy values
between clients and servers. It is important to note that if a client application
specifies a timeout value for a remote request and the timeout occurs then the
CORBA runtime system in the server can cancel the requestonly if the request
is still queued up to be dispatched within the server; the servercannotcancel
the request if it has already been dispatched to the target object.

16.2 Asynchronous Messaging Interface (AMI)

By default, IDL operations provideblockingcall-and-reply semantics, that is,
when a client application makes a remote call to an object in a server, the client
blocks until the server sends back a reply. These semantics are suitable for
many applications, but some applications can benefit fromnon-blockingcall-
and-reply semantics.

For a long time, developers had just two choices for obtaining non-blocking
call-and-reply behavior:

1. The client could create a new thread and get that thread to make a block-
ing call. In this way, the main thread of the client is not blocked. This ap-
proach cannot be used if the client application must be single-threaded.
Also, even if a client can be multi-threaded, the overhead of thread cre-
ation means that this approach does not scale up to make a lot of non-
blocking calls.

2. The client could use thesend deferred() API of the DII (Sec-
tion 15.4 on page141). However, the DII can be very tedious to use

148 CHAPTER 16. CORBA MESSAGING

so programmers rarely wanted to use this approach. Also, with this ap-
proach, the client application had to periodically poll to check if the re-
ply had come back. Polling can waste a lot of CPU time if it is done
too frequently. On the other hand, infrequent polling can cause delays in
processing replies.

CORBA has now matured to provide a different non-blocking call-and-reply
mechanism, which is called Asynchronous Messaging Interface (AMI).

AMI is an optional part of CORBA and not all CORBA products support it.
Also, AMI requires that additional operations be generated into proxy classes
by the IDL compiler. Unfortunately, doing this would break binary portability
of Java CORBA products. For this reason, no Java CORBA product can sup-
port AMI—at least, not until the IDL-to-Java mapping is updated to support
AMI. 1 For these reasons, if you are considering using AMI in a project then it
is vitally important to check that the CORBA product you are using supports
AMI.

If a CORBA product does support AMI then it works as follows:

• For each IDL operation,foo() , the IDL compiler generates: (1) a
blockingoperation calledfoo() , (2) a non-blockingoperation called
sendc foo() , and (3) anothernon-blockingoperation calledsendp
foo() . The first operation is generated by all IDL compilers; the other
two generated operations are new to AMI. Note that AMI support in an
IDL compiler might be disabled by default, so you might have to pass a
command-line option to the IDL compiler to instruct it to generate the
AMI operations. The documentation provided by your CORBA vendor
should mention which command-line option to use.

• The sendc version of the operation takesin and inout parameters.
It also takes acallback object(Section1.4.2.2on page10) as a para-
meter. An operation on the callback object will be invoked later with
the returnedout and inout parameters and return value. It is up to
the client developer to implement the callback object as a servant (Sec-
tion 5.2on page45) and activate it into a POA (Section5.5on page47).
It is important to note that the callback object is a “normal” CORBA ob-
ject, so it could actually be located in another CORBA application. In

1 There is one exception to this. The Java-based JacORB product has added experimental
support for AMI. The experience gained by the JacORB development team in doing this is likely
to be fed back into the OMG standardization process for enhancing the IDL-to-Java mapping in
order to support AMI.

16.3. TIME INDEPENDENT INVOCATIONS (TII) 149

effect, one application can send requests to a server and the reply can be
processed by either the same clientor another application.2

• The sendp version of the operation takesin and inout parameters.
It returns apoller object. The client can periodically invoke upon this
returned poller object to determine if the reply has arrived and, if so, find
out the values of the returnedout and inout parameters and return
value. The implementation of the poller object is generated by the IDL
compiler.

It is important to note that both the callback and polling communication mecha-
nisms are implemented entirely within the client-side ORB runtime system—a
server application is unaware of, and is unaffected by, how a client has made a
request.

It is also important to note that of the CORBA implementations that support
AMI, most support the callback model but donot support the polling model.
This is because most developers view the callback model as being superior
to the polling model and so CORBA implementors have little motivation to
implement the polling model.

16.3 Time Independent Invocations (TII)

GIOP (Chapter11) is a synchronous protocol. This means that the asynchro-
nous messaging infrastructure of CORBA must be layeredon top ofGIOP. For
example, thecallback and polling models (Section16.2) are layered on top
of GIOP by the CORBA runtime system in client applications. Another com-
monly desired aspect of a messaging system istime independent invocations
(TII), which can be explained as follows. Let us assume that a client applica-
tion sends a request to a server but then the client is killed before it receives
the reply. TII means that the reply message is kept in some form of persistent
storage until the client application is restarted and then the reply message is
delivered to the client.

The CORBA Messaging specification provides TII by introducing another
piece of infrastructure called message routers. Amessage routeris a delegation
server, that is, a server that receives an incoming message and delegates it
(passes it on) to another application.

2 As will be mentioned soon, AMI is implemented entirely within the CORBA runtime system
of the client application. Because of this, the reply message will always be sent from the server
to the CORBA runtime system of the client from which the request originated; it is the CORBA
runtime system in the client that then invokes the reply on the callback object, which can be in the
same client process or in another application.

150 CHAPTER 16. CORBA MESSAGING

An IOR (Chapter10) contains the contact details of an object. However, an
IOR can optionally have aTaggedComponent (Section10.2.3on page108)
that contains a sequence of embedded router IORs. The sequence of router
IORs reflects the chain of delegation, from the first router to the next router and
so on to the eventual target server. If a client uses such an IOR but the client
doesnot have the relevant routing policies set then requests are sent in the
normal manner, that is, direct to the object in the server. However, if the client
doeshave the relevant routing policies set then the CORBA runtime system
in the client uses a different mechanism to send requests: the client sends the
request to the first router, and the IOR of a callback object is passed along
with the request. Each router delegates the request message to the next router.
Eventually, the last router sends the request to the target server. As far as the
target server is concerned, the last router is its client, and so the server sends
its reply message to this last router. The routers then pass the reply message
back along the chain of routers. The router closest to the client then delivers
the reply message by invoking the appropriate operation on the callback object
provided by the originating client.

The “added value” provided by the routers is that each router can store re-
quest/reply messages in a persistent store, such as a database. If any process—
the client, one of the routers or a server—dies during the delegation of re-
quest/reply messages then the persistent storage of the messages means that
the delegation can continue when the dead process is restarted.

Several policies (Section16.1) can be used to control the QoS of message
delivery:

• The RoutingPolicy type controls whether or not requests to IORs
with an embedded routingTaggedComponent are sent “normally” or
via the routers. TheROUTERNONEvalue means that the requests are
sent directly to the target IOR. TheROUTEFORWARDvalue means that
the request is delivered via routers. TheROUTESTOREANDFORWARD
value means that the routers store messages persistently, in order to pro-
vide TII.

• The MaxHopsPolicy type is used to specify an upper limit on the
number of “hops” (delegations from one router to another) that can occur
when delivering a message.

• The QueueOrderPolicy type is used to tell routers in which order
they should delegate messages. For example, they can delegate messages
in first-come, first-served (FIFO) order, in order of a priority associated
with each message, or in the “deadline” order (of when messages will
timeout).

16.4. FURTHER READING 151

16.4 Further Reading

A very readable and more detailed overview of AMI can be found in some
magazine articles [SV99a, SV99b].

152 CHAPTER 16. CORBA MESSAGING

Chapter 17

Proprietary Fault Tolerance

Some of the low-level infrastructure defined by CORBA makes it possible for a
CORBA product to have fault tolerance capabilities. However, for a long time,
the CORBA specification did not specify the details ofhowthis fault tolerance
should be provided or administered. The result was that many CORBA prod-
ucts provided simple-to-use (but limited) fault tolerance capabilities in a pro-
prietary manner. More recently, the OMG has defined the (optional) CORBA
Fault Tolerance specification, which provides a more standardized and more
powerful (but also more complex) fault tolerance infrastructure.

This chapter discusses the proprietary fault tolerance mechanisms provided
by some CORBA implementations. Section17.1 introduces some basic is-
sues that need to be addressed by fault tolerance mechanisms. Then Sec-
tion 17.2gives overviews of the proprietary fault tolerance mechanisms in sev-
eral CORBA products. Finally, Section17.3 discusses some miscellaneous
issues that need to be considered when using proprietary fault tolerance mech-
anisms. A discussion of the newer CORBA Fault Tolerance specification is
deferred until the next chapter.

17.1 Basic Issues in Fault Tolerance

17.1.1 Replication Granularity

One important aspect of fault tolerance is the need for replication. Because
CORBA is an object-oriented middleware technology, you might think that
fault tolerance in CORBA is about the need to replicateobjects. Although this
is true, CORBA objects live in (POAs within) server processes, so, at a prac-

153

154 CHAPTER 17. PROPRIETARY FAULT TOLERANCE

tical level, replicating CORBA objects involves replicating server processes.
Indeed, most CORBA products that support replication do so at the granularity
of entire server processes rather than at the finer granularity of individual ob-
jects.1 This is because replication at the coarser granularity of an entire process
dramatically reduces the volume of information that the CORBA runtime sys-
tem needs to maintain about replicated entities, and so increases the scalability
of applications that utilize replication.

17.1.2 Contact Details for a Replicated Object

If a client fails to communicate with one replica of an object then the client
should attempt to communicate with another replica of the object. In order to
do this, the client needs to have access to the “contact details” for all the repli-
cas of an object. The flexibility of both interoperable object references (IORs)
and implementation repositories (IMRs) provide the necessary infrastructure
for this, as I now discuss.

Replicated Server deployedwithout an IMR. As discussed in Chapter10,
an IOR can containseveralsets of contact details. This makes it pos-
sible for a single IOR to contain a separate set of contact details for each
replica of an object. A client attempts to communicate with a replicated
object by using one of the sets of contact details in the IOR. If this fails
then the client switches over to use another set of contact details in the
IOR. CORBA does not specifywhichcontact details should be tried first,
but they are usually tried in the order they appear in the IOR.

Replicated Server deployedwith an IMR. As discussed in Section7.2.3on
page74, some CORBA products allow a replicated server to be regis-
tered with the IMR. If this is done then the IOR of a replicated object
contains the host and port of the IMR; when a client sends its first re-
quest to the IMR, the IMR redirects the client to one of the replicas of
the desired object. The client sends future requests to that same replica.
If the client’s communication with the replica ever fails then the CORBA
runtime system in the client switches back to using the original host and
port, which is for the IMR, and the IMR then redirects the client to an-
other replica of the desired object.

1 At least one CORBA product, Orbix, allows replication at the mid-level granularity of indi-
vidual POAs. However, in practice, very few Orbix applications take advantage of this finer level
of replication granularity. Instead, most deployed Orbix applications that use replication choose to
replicateall the POAs within a server process, so the effect is to replicate the entire server process.

17.2. EXAMPLE PRODUCTS 155

Replicated IMR. In order to prevent the IMR from becoming a single point
of failure, the IMR should itself be replicated. An IOR for an object in
a server that is deployed through a replicated IMR contains the host and
port details forall the IMR replicas. Because of this, the client’s first
request is sent to one of the IMR replicas. If the client cannot communi-
cate with that IMR replica then the CORBA runtime system in the client
switches over to use another replica of the IMR. The IMR replica then
redirects the client to the desired (and possibly replicated) server.

17.1.3 Use ofPERSISTENTPOAs

The meaning of thePERSISTENTand TRANSIENTPOA policies are ex-
plained in Section6.1.3on page62. To recap briefly, a POA (Section5.5 on
page47) is a container forservants(the host programming language objects
that represent CORBA objects). The policies that are used to create a POA
are applied to all the servants within a POA. If a POA has thePERSISTENT
policy then the IORs for all servants/objects in that POA are valid even if the
server process dies and is restarted. Conversely, if a POA has theTRANSIENT
policy then the IORs for all servants/objects in that POA are valid only for the
duration of the server process: once the server process dies, theTRANSIENT
IORs automatically become invalid.

At a philosophical level, it is not sensible forTRANSIENT, that is, tempo-
rary, objects to be fault tolerant. At a practical level, aTRANSIENTIOR is
automatically invalidated when a server terminates,2 so this makes it difficult,
if not impossible, for a fault tolerance infrastructure to work correctly when
server processes that containTRANSIENTobjects die and are restarted.

If you want to implement a server that will be deployed with fault tolerance
then ensure that you usePERSISTENTPOAs in the server.

17.2 Example Products

17.2.1 OmniORB

OmniORB does not provide an implementation repository so there is no need
to discuss how to replicate an omniORB server that is deployed through an

2 The automatic invalidating of aTRANSIENTIOR is usually achieved by having the CORBA
runtime system in a server embed a timestamp in theobject key(Section5.6.1on page52). When
a server dies and is restarted, the timestamp information in a previously-exportedTRANSIENT
IOR is out of date; this ensures that aTRANSIENTIOR is not valid across restarts of a server.

156 CHAPTER 17. PROPRIETARY FAULT TOLERANCE

IMR. Instead, this section focuses on how to deploy a replicated omniORB
serverwithoutan IMR.

OmniORB has two configuration variables that, when combined, can be
used to set up a replicated server.

• endPoint = giop:tcp: <host >: <port >
The giop:tcp: portion of the value specifies that the IIOP commu-
nication protocol is to be used (omniORB supports other communica-
tion protocols too); after that the server’shost and listeningport are
specified. Some readers might think it is redundant to have to explicitly
specify the host on which the server is running. However, doing this
can be useful if the server runs on a multi-homed machine, that is, if the
server’s machine is known by several different names or has several dif-
ferent IP addresses. The server listens on the specifiedhost:port and
also embeds thathost:port information in IORs for objects within
the server.

• endPointNoListen = giop:tcp: <host >: <port >
The value of this variable is in the same format as that ofendPoint .
The server doesnot listen on the specifiedhost:port , but it doesem-
bed thathost:port information in IORs for objects within the server.

Let us assume that you want to have three replicas of a server: one replica
will run on host1.foo.com and listen on port 5000, another replica will run
on host2.foo.com and listen on port 6000, and the final replica will run
on host3.foo.com and listen on port 7000. The omniORB configuration
variables should be set for the first server replica as shown below:

Extract from omniORB configuration file for replica 1
endPoint = giop:tcp: host1.foo.com : 5000
endPointNoListen = giop:tcp: host2.foo.com : 6000

= giop:tcp: host3.foo.com : 7000

The result is that the server listens onhost1:5000 , but exported IORs indi-
cate that objects within the server can be contacted at any of:host1:5000 ,
host2:6000 or host3:7000 (all within the foo.com domain). The cor-
responding information in the configuration file for the second replica is shown
below:

Extract from omniORB configuration file for replica 2
endPoint = giop:tcp: host2.foo.com : 6000
endPointNoListen = giop:tcp: host1.foo.com : 5000

= giop:tcp: host3.foo.com : 7000

17.2. EXAMPLE PRODUCTS 157

Likewise, the information in the configuration file for the third replica is shown
below:

Extract from omniORB configuration file for replica 3
endPoint = giop:tcp: host3.foo.com : 7000
endPointNoListen = giop:tcp: host1.foo.com : 5000

= giop:tcp: host2.foo.com : 6000

The overall effect is that each server listens on its ownhost:port , but ex-
ported IORs contain thehost:port details forall the replicas.

Note that an omniORB application finds the omniORB configuration file by
the value of theOMNIORBCONFIGenvironment variable. If you want to run
several server replicas on the same machine then you will need to have several
configuration files (one for each server replica) and set theOMNIORBCONFIG
environment variable appropriately when starting each replica. If you prefer
to not have multiple configuration files then you can specify theendPoint
and endPointNoListen configuration information as command-line op-
tions when starting each server replica. The servers then pass the command-
line options as a parameter toORBinit() , as discussed in Section3.2.3on
page29.

17.2.2 Orbix

Orbix allows a replicated server to be deployed with or without an implemen-
tation repository. I discuss each of these forms of deployment in turn.

17.2.2.1 Deploying a Replicated Serverwith an IMR

Orbix administration is performed through sub-commands of theitadmin
utility. Each sub-command performs a small amount of work so you typi-
cally need to execute severalitadmin commands to complete a useful unit
of work, such as registering an Orbix server with the IMR. However,itadmin
has a built-in interpreter for an open-source scripting language called Tcl (pro-
nouncedTickle). This makes it possible to write a Tcl script that performs
the entire sequence ofitadmin commands required to carry out a task. The
Orbix Administration Made Simplechapter of theCORBA Utilitiespackage
[McH] discusses several useful task-baseditadmin Tcl scripts. One of those
scripts, orbix srv admin , simplifies the work involved in registering a
server so that it can be deployed through the IMR.

When registering a server withorbix srv admin , you can specify ei-
ther a single host or a list of hosts on which the server is to be run.3 If you

3 Technically, you specify a list ofnode daemons, rather than a list of hosts. However, there

158 CHAPTER 17. PROPRIETARY FAULT TOLERANCE

specify a list of hosts thenorbix srv admin registers the server as arepli-
cated server.

As discussed in Section17.1.2on page154, the IOR of a object in a repli-
cated server contains the host and port of the IMR; when a client sends its first
request to the IMR, the IMR redirects the client to one of the replicas of the de-
sired object. The client sends future requests to that same replica. If the client’s
communication with the replica ever fails then the CORBA runtime system in
the client switches back to using the original host and port, which is for the
IMR, and the IMR can then redirect the client to another replica of the desired
object.

The itconfigure utility is used to set up the initial configuration for
an IMR. A option in this utility makes it easy to create a replicated IMR (so
that the IMR is not a single point of failure). If you do this then, as discussed
in Section17.1.2, an IOR for an object in a server that is deployed through
a replicated IMR contains the host and port details forall the IMR replicas.
Because of this, the client’s first request goes to one of the IMR replicas. If
the client cannot communicate with that IMR replica then the CORBA runtime
system in the client switches over to use another replica of the IMR. The IMR
replica then redirects the client to the desired (and possibly replicated) server.

The Orbix IMR keeps track of which server replicas are currently running,
and it can optionally be used to automatically restart servers that have died.
When a client sends its first request to the IMR, the IMR redirects the client to
one of the currently running server replicas. The IMR can use either around-
robin or randompolicy in choosing to which server replica a client is redi-
rected. By doing this, the fault tolerance mechanism also provides a per-client
load balancing strategy.

17.2.2.2 Deploying a Replicated Serverwithout an IMR

By default, an Orbix server with persistent POAs (Section6.1.3on page62)
is deployed through the Orbix IMR. If you want to deploy a persistent-POA
serverwithout the Orbix IMR then your server has to invoke some Orbix-
proprietary APIs.4 However, thePoaUtility class (discussed in theCre-
ation of POA Hierarchies Made Simplechapter of theCORBA Utilitiespack-
age [McH]) encapsulates the use of these proprietary APIs and makes it easy

is normally one node daemon per host so the distinction between node daemons and hosts is not
relevant to the discussion at hand.

4 The need to use proprietary APIs to choose between different deployment models for Orbix
servers is slowly disappearing. Orbix 6 allows this decision to be made through runtime configu-
ration values for C++ applications but, at the time of writing, Java applications still require use of
proprietary APIs.

17.2. EXAMPLE PRODUCTS 159

for different deployment options to be chosen through, say, a command-line
option.

When deploying a persistent-POA server without an IMR then the server
should listen on fixed ports. The fixed ports can be specified in the Orbix
runtime configuration file, as illustrated in Figure17.1. The following points
should be noted about this configuration:

• Orbix configuration is arranged into (potentially nested) scopes. For
example,BankSrv is a scope, andBankSrv.replica 1 is one of
three scopes nested within it. When an Orbix application is started, the
-ORBname <scope > command-line option can be used to specify
the scope from which the application should obtain its configuration.

• Orbix allows different POAs within a single server to listen on the same
or different ports. Proprietary APIs are required to make use of this flex-
ibility, but thePoaUtility class [McH, Ch. 5] encapsulates the use of
these APIs, and allows each POA manager (Section5.7 on page56) to
use a different port. The example in Figure17.1assumes that the servers
use thePoaUtility class and have two POA managers: one identified
by the label"core" and the other identified by the label"admin" .

• Variables with names of the form<label>:iiop:addr_list spec-
ify a list of host:port strings, some of which may have an optional
"+" prefix. The server listens on anyhost:port entries that arenot
preceded with"+" . However,all the host:port pairs are embed-
ded in IORs for objects (within POAs controlled by the<label> POA
manager) within the server.

If a server replica is started with the-ORBname BankSrv.replica 1
command-line argument then that server listens on bothhost1:5000 and
host1:5001 (one port per POA manager), but the server also embeds the
other listedhost:port details in exported IORs. By starting a second replica
with -ORBname BankSrv.replica 2 and starting a third replica with
-ORBname BankSrv.replica 3, the overall effect is that each server lis-
tens on its ports but exported IORs contain thehost:port details forall the
replicas.

This Orbix mechanism is broadly similar to that offered by omniORB (Sec-
tion 17.2.1on page155), with the following minor differences:

• All the objects in an omniORB server are accessible through thesame
port, while Orbix allows the possibility forsomeobjects in a server to
be accessible through one port andother objects in the same server to

160 CHAPTER 17. PROPRIETARY FAULT TOLERANCE

BankSrv {
replica_1 {

core:iiop:addr_list = ["host1:5000",
"+host2:6000",
"+host3:7000"];

admin:iiop:addr_list = ["host1:5001",
"+host2:6001",
"+host3:7001"];

};
replica_2 {

core:iiop:addr_list = ["+host1:5000",
"host2:6000",

"+host3:7000"];

admin:iiop:addr_list = ["+host1:5001",
"host2:6001",

"+host3:7001"];
};
replica_3 {

core:iiop:addr_list = ["+host1:5000",
"+host2:6000",

"host3:7000"];

admin:iiop:addr_list = ["+host1:5001",
"+host2:6001",

"host3:7001"];
};

};

Figure 17.1:Orbix fault tolerance configuration for a replicated server

be accessible through a different port. The main apparent benefit of this
additional flexibility in Orbix is that one port might be accessible across
a firewall while access to the other port (and hence the objects accessible
via it) might be restricted to clients inside the firewall. In effect, this pro-
vides a simple security mechanism. However, this security mechanism
is likely to be too basic for the needs of most organizations. The more
flexible approach offered by the CORBA Security Service (Chapter23)
has more widespread appeal.

• If several omniORB applications run on the same computer but require

17.2. EXAMPLE PRODUCTS 161

different configuration then this is achieved by having a separate con-
figuration file for each omniORB application. In contrast, the use of a
separate scope for each application in an Orbix configuration file allows
several applications to share the same configuration file. Minimizing the
number of configuration files can simplify administration. Orbix allows
configuration information to be stored in either a textual file or in acon-
figuration repository, which is a database that is accessed via a CORBA
server “wrapper”. The use of a configuration repository allows config-
uration information to be maintained in a centralized location while be-
ing accessible from Orbix applications that run on the same or different
computers. This centralized maintenance of configuration information
can further simplify administration.

The above differences between omniORB and Orbix are relatively minor when
deploying replicated serverswithout an IMR. As far as fault tolerance is con-
cerned, the biggest difference between omniORB and Orbix is that Orbixalso
supports fault tolerance for servers that are deployedwith an IMR (as discussed
in Section17.2.2.1).

17.2.3 Orbacus

Orbacus does not provide any fault tolerance capabilities within its runtime
system. Instead, it provides a command-line utility callediormerge . An
example of its usage is as follows:

iormerge -f replica1.ior replica2.ior replica3.ior >new.ior

By default, iormerge interprets its command-line arguments as stringified
IORs. However if, as shown above, the-f option is given theniormerge
interprets its command-line arguments as the names of files that contain stringi-
fied IORs. Theiormerge utility reads the “contact details” from these IORs
and writes to standard output a new stringified IOR that containsall the contact
details. If this newly created IOR is made available to client applications then
the clients can communicate with any of the replicas.

Use of iormerge is sufficient for replicated servers that contain only a
singleton object. However, it is not appropriate for servers that have, say, a fac-
tory object (Section1.4.2.1on page9) that can create new objects on demand.
The reason for this is that the IOR of a newly created object contains only one
set of contact details (for the server replica in which the object is created) rather
than the contact details for all the replicas.

162 CHAPTER 17. PROPRIETARY FAULT TOLERANCE

17.2.4 Server-side support forcorbaloc URLs

As discussed in Section12.4.2on page126, CORBA has not standardized the
server-side support forcorbaloc URLs. Instead, most CORBA products
provide proprietary APIs that can be used to make an object accessible via a
corbaloc URL. Let us assume you use these proprietary APIs so that a server
makes an object available under the name"foo" . If you deploy three replicas
of a server that listen onhost1:5000 , host2:6000 andhost3:7000
then the followingcorbaloc URL can be used by clients to communicate
with the replicated"foo" object:

corbaloc::host1:5000,:host2:6000,:host3:7000/foo

Use of such acorbaloc URL is sufficient for replicated servers that contain
only a singleton object. However, it is not appropriate for servers that have,
say, a factory object (Section1.4.2.1on page9) that can create new objects on
demand. The reason for this is that the IOR of a newly created object contains
only one set of contact details (for the server replica in which the object is
created) rather than the contact details for all the replicas.

17.2.5 Critique

As you might expect, the proprietary fault tolerance mechanisms of different
CORBA products differ from one other, both in their “look and feel” and in
their capabilities. However, they have some characteristics in common:

• With the exception ofcorbaloc URLs, none of the proprietary mech-
anisms require server-side coding. Rather, they are based on runtime
configuration or the use of administrative utilities.

• The proprietary fault tolerance mechanisms are concernedsolely with
getting several sets of “contact details” into the IORs that are exported
from replicated servers. The mechanisms neither help you nor hinder
you in maintaining state consistency across server replicas.

• Although the mechanisms are proprietary, they do not hinder interoper-
ability with client applications that are implemented using other CORBA
products. This is because the proprietary mechanisms are concerned
solely with embedding several sets of “contact details” into the IORs
that are exported from servers. Since having several sets of contact de-
tails in one IOR is CORBA-compliant, a client implemented with any
CORBA product can communicate with a server that uses a proprietary
fault tolerance mechanism.

17.3. MISCELLANEOUS ISSUES 163

17.3 Miscellaneous Issues

17.3.1 Fault Tolerance is not Load Balancing

It should be noted that although fault tolerance and load balancing both rely
on the use of replicas, a fault tolerance infrastructure does not necessarily im-
ply load balancing. Most of the fault tolerance mechanisms discussed in this
chapter do not provide load balancing. Instead, it is likely (though not guar-
anteed) that most/all clients will communicate with just one server replica; it
is only when that server replica dies that clients will seek another replica with
which to communicate. One exception to this concerns replicated servers that
are deployed through the Orbix IMR (Section17.2.2.1). In this case, the IMR
performs per-client load balancing, that is, the IMR redirects some clients to
one server replica, some other clients to another replica and so on.

Although the load balancing mechanism provided by the Orbix IMR can be
useful, it is possible for the load from clients to be spread over server replicas in
an unequal manner. For example, let us assume that 10 clients connect, via the
Orbix IMR, to two replicas of a server, and that there are 5 clients connected
to each replica. If each client sends a similar number of requests to servers
then the load is balanced over the two servers, at least initially. However, let
us assume that after a few minutes, 3 of the clients connected to one of the
replicas terminate. We are now left with just 2 clients communicating with one
server replicas while there are 5 clients communicating with the other replica.
The Orbix IMR does not have any way of re-balancing the number of clients
across the server replicas. Likewise, if a third server replica is now started then
the IMR does not have any way of re-balancing the number of clients across
the now-increased number of server replicas.

The termadaptive load balancingis often used to refer to load balancing
mechanisms that periodically try to rebalance load from clients over servers.
CORBA has not standardized on a load balancing mechanism and further dis-
cussion of load balancing is outside the scope of this book. Several CORBA
products provide proprietary load balancing mechanisms. Interested readers
are advised to consult documentation of CORBA products for details and to
do a search with an Internet search engine for, say, “CORBA adaptive load
balancing”.

An alternative approach to load balancing is to invest in a hardware load-
balancing switch. The hardware switch acts as a delegation server. It receives
requests from client machines and delegates them to server machines specified
in the switch’s configuration. Some hardware switches utilize mechanisms that
attempt to keep client load balanced across server machines.

164 CHAPTER 17. PROPRIETARY FAULT TOLERANCE

17.3.2 Timeout Values in a Fault Tolerant System

A practical issue to keep in mind is that you may need to adjust client-side
timeout values when setting up a fault tolerant system. In particular, if a server
processis not running then a client’s attempt to connect to the server will fail
quickly (typically within a few milliseconds) and so the CORBA runtime sys-
tem in the client can quickly fail-over to use another set of contact details in
an IOR. However, if the server’scomputeris turned off or is physically dis-
connected from the network then the client’s attempt to connect to the server
may take a relatively long time (perhaps tens of seconds) to fail. Such a long
delay before a fail-over occurs is often unacceptable to users. You should con-
sult your CORBA vendor’s documentation to find out how you can shorten the
client’s timeout for establishing connections. If your clients and servers all run
on a fast local area network then you can usually shorten the connection time-
out to a tiny fraction of a second. Doing this will result in a fast fail-over when
a server machine dies.

Chapter 18

CORBA Fault Tolerance

The previous chapter discussed proprietary fault tolerance mechanisms pro-
vided by some CORBA implementations. This chapter discusses CORBA-FT,
which is the commonly-used name for the fault tolerance functionality that was
added to the CORBA specification in 2000.

18.1 Terminology and Basic Infrastructure

CORBA-FT types are defined in a module calledFT. Most of the fault tol-
erance infrastructure is concentrated in theFT::ReplicationManager
interface. That interface defines two operations but inherits most of its func-
tionality from base interfaces calledObjectGroupManager , Generic-
Factory andPropertyManager , all of which are defined in theFT mod-
ule. I now discuss each of these interfaces in turn.

18.1.1 TheObjectGroupManager Interface

CORBA-FT uses the termobject groupto mean a replicated object. An indi-
vidual replica is called amemberof an object group. An Interoperable Object
Group Reference (IOGR) is an IOR (Chapter10) for an object group. An
IOGR contains multiple profiles (that is, multiple sets of contact details): typ-
ically, one profile for each member that iscurrently running.1 An IOGR has
an embeddedTaggedComponent (Section10.2.3on page108) that records

1 Alternatively, an IOGR might contain a separate profile for each of severalgatewaysthat
delegate requests to object replicas. More details about gateways is provided in the discussion
about theACTIVE replication style on page168.

165

166 CHAPTER 18. CORBA FAULT TOLERANCE

a version number for the IOGR. Whenever the set of members for an object
group changes (for example, when a member dies or is restarted), the version
number of the IOGR is updated.

TheFT::ObjectGroupManager interface defines operations that ma-
nipulate information about the currently-alive members in object groups, for
example, to add and remove members from an object group.

18.1.2 TheGenericFactory Interface

FT::GenericFactory is a factory interface (Section1.4.2.1on page9). It
hasgenericas part of its name because it is used to create objects of arbitrary
types.

module FT {
struct Property { ... }; // name-value pair
typedef sequence<Property> Properties ;
typedef Properties Criteria ;
typedef CORBA::RepositoryId TypeId ;
...
interface GenericFactory
{

typedef any FactoryCreationId ;
Object create object (

in TypeId type_id,
in Criteria the_criteria,
out FactoryCreationId factory_creation_id)

raises (...);
void delete object (

in FactoryCreationId factory_creation_id)
raises (...);

};
};

Figure 18.1:TheFT::GenericFactory interface

The first parameter to thecreate object() operation is arepository
id (Section9.4on page102). This parameter specifies the type of the object to
be created. The next parameter specifies a sequence of name-value pairs that
can be used for an application-specific purpose, for example, to provide ini-
tialization values for the object. The operation returns a reference to the newly
created object, but is also uses anout parameter to specify an identifier that

18.1. TERMINOLOGY AND BASIC INFRASTRUCTURE 167

can later be used to uniquely identify the object to the factory that created it.
In particular, this unique identifier can be used as a parameter to thedelete
object() operation.

18.1.3 ThePropertyManager Interface

The concept of “one size fits all” does not apply to fault tolerance. Instead,
there are many different techniques that can be used to achieve fault tolerance,
where each technique is applicable to some but not all types of application. Be-
cause of this, developers useproperties(name-value pairs) to inform CORBA-
FT which techniques are used in an application.

TheFT::PropertyManager interface defines operations that are used
to manage the fault tolerance properties. Properties can be set to bedefault
properties,type-specificproperties (that is, properties that are specific to an IDL
interface) orobject groupproperties (that is, properties specific to a replicated
object). Object group properties override type-specific properties, which in
turn override default properties.

The fault tolerance properties defined by CORBA-FT are discussed below.

Factories. Developers have to implement theGenericFactory interface
and create an instance of it in each replica of a CORBA-FT server. When
the CORBA-FT infrastructure wants to create members of an object group, it
invokescreate object() onGenericFactory objects in servers.

CORBA is object-oriented rather than process-oriented. Because of this,
the CORBA-FT infrastructure does not know in which server process a spe-
cific GenericFactory resides. To work around this, CORBA-FT defines a
type calledFT::Location , which is atypedef of CosNaming::Name
(Figure4.1on page39), that is, a compound string. In effect, a location is the
conceptual name by which CORBA-FT knows a server process. CORBA-FT
specifies the format that this compound string should have. In effect, it encodes
the host on which a server runs and a conceptual name for the server process.

The factories property takes a value that is a sequence of structures, where
each structure contains a reference for aGenericFactory object, a location
and somecriteria (like Properties , Criteria is a sequence of name-
value pairs) that can be passed as a parameter tocreate object() .

The factories property is the only property thatcannotbe set as a default
property. Instead, it must be specified for each interface type and/or for each
object group. Having a type-specific factories property makes it feasible for de-
velopers to have several type-specific factories within a single location (server

168 CHAPTER 18. CORBA FAULT TOLERANCE

process), if they should wish. Alternatively, if a developer wants a single fac-
tory to be used to create several types of object in a server then that factory can
be registered several times: once for each type of IDL interface.

Replication style. The replication style property has one of the following
values:STATELESS, COLDPASSIVE, WARMPASSIVE or ACTIVE. There
is also a placeholder forACTIVE WITH VOTING, which is likely to be sup-
ported in the future. All of these property values are constants defined in the
FT module.

TheSTATELESSvalue indicates that the behavior of an object is indepen-
dent of the history of invocations upon the object. This replication style could
be used for an object that provides read-only access to a database.

In theCOLDPASSIVE andWARMPASSIVE replication styles, only one
member, called theprimary member, executes the invocations upon the object
group. The other members of the object group are calledbackup members. Pe-
riodically, acheckpoint(that is, a snapshot of the state) of the primary member
is taken. In addition, CORBA-FT infrastructure persistently logs every request
that is invoked upon the primary member. This log is truncated when a new
checkpoint of the primary member’s state is taken. When the primary member
fails, the most recent checkpoint plus a reply of requests in the log is used to
bring a backup member up-to-date and promote it to being the new primary
member.

The difference between theCOLDPASSIVE andWARMPASSIVE is the
technique used to bring a backup member up-to-date. In theCOLDPASSIVE
replication style, the most recent checkpoint of the old primary member is
loaded into the new primary and then requests in the log file are re-invoked
on the new primary. In theWARMPASSIVE replication style, whenever a
checkpoint of the primary member is taken, it is automatically loaded into the
backup members, thereby enabling a failover to be handled faster.

In theACTIVE andACTIVE WITH VOTINGreplication styles, the IOGR
contains contact details not for the group members, but rather forgateways,
which are delegation servers. When a gateway receives a request from a client,
it delegates the request toall the group members. The CORBA-FT specifica-
tion allows the gateway to use a proprietary multicast protocol to communicate
with the group members (this use of a proprietary protocol is transparent to
both client and server developers). Each group member processes an invoca-
tion independently and sends its reply back to the gateway.

In theACTIVE replication style, the gateway picks one of the replies and
sends this back to the client, and discards the other replies.

In theACTIVE WITH VOTINGreplication style, the gateway collects all

18.1. TERMINOLOGY AND BASIC INFRASTRUCTURE 169

the replies and compares them. Theyshouldall be equal, but if there is a
fault somewhere then one or more of the replies might be incorrect. Assuming
that a majority of the replies are identical, the gateway sends one of the iden-
tical replies to the client and discards the other replies. TheACTIVE WITH
VOTINGreplication style is not yet supported in CORBA-FT, but it is expected
to be supported in the future.

Initial and minimum number of replicas. An integer property is used to
specify theinitial number of replicas of an object that should be created. An-
other integer property specifies theminimumnumber of replicas of an object
that are needed to maintain the desired fault tolerance. If “too many” replicas
terminate so that the quantity of replicas falls below the desired minimum then
more replicas are created to increase the quantity back to the desired minimum
level.

Membership style. The value of the membership style property can be either
MEMBINF CTRLor MEMBAPP CTRL.

If the MEMBINF CTRL membership style is used then a server creates
an object group by invokingcreate object() on the replication manager,
which is part of the CORBA-FT infrastructure. The replication manager then
invokescreate object() on factories in server processes, in order to cre-
ate replicas of the object.

If the MEMBAPP CTRLmembership style is used then a server creates an
initially emptyobject group by invokingcreate object() on the replica-
tion manager. The server then must then do one of the following to populate
the object group with members:

• The server can repeatedly invokecreate member() on the replica-
tion manager, each time specifying a different location where a member
is to be created. The replication manager invokescreate object()
on the factories at each of the specified locations.

• Alternatively, the server can repeatedly invokecreate object() on
factories in different locations and then invokeadd member() on the
replication manager for each of these newly created replicas.

Consistency style and checkpoint interval. The value of the consistency
style property can be eitherCONSINF CTRLor CONSAPP CTRL.

If the CONSINF CTRL consistency style is used then the CORBA-FT
infrastructure automatically performs checkpointing, logging of requests and

170 CHAPTER 18. CORBA FAULT TOLERANCE

failover when a primary member terminates. When theCONSINF CTRLcon-
sistency style is used then a complementary policy value is used to specify the
frequency at which checkpoints are performed.

If the CONSAPP CTRLconsistency style is used then the server applica-
tion code must perform checkpointing, logging of requests and failover when
a primary member terminates.

Fault monitoring, interval & timeout, and granularity. The fault monitor-
ing style property can be one ofPULL, PUSHor NOTMONITORED. ThePUSH
fault monitoring style is not yet supported, but support for it is anticipated in
the future.

If the PULL fault monitoring style is used then the CORBA-FT infrastruc-
ture periodically invokes a “ping”-style operation, calledis alive() , to
check if object members are still alive.

The fault monitoring interval and timeout property is astruct that has
two fields. One field specifies the frequency of the “ping” requests, and the
other specifies the time allowed for responses to those requests to determine
whether an object is faulty.

The fault monitoring granularity property complements thePULL fault
monitoring style. The granularity can be one ofMEMB, LOC, or LOCAND
TYPE. The MEMB(short for member) value indicates that the CORBA-FT
infrastructure must ping each member individually. If the number of object
groups (and members within those groups) is large or if the monitoring in-
terval is very short then this property value can result in significant network
overhead. The network overhead can be reduced by specifying theLOC(short
for location) value. A location is, in essence, a server process. A single ping
message is sent for all the object members that live at the same location (that
is, within the same server process). If the pinged object is faulty then it is as-
sumed that all the object members at that location are faulty. TheLOCAND
TYPEvalue is a similar to theLOCvalue except that one ping message is sent
for all the object members of the same (IDL interface) type that live at the same
location.

If the NOTMONITOREDfault monitoring style is used then CORBA-FT
does not periodically check if object members are still alive. Instead, devel-
opers implement their own fault monitoring functionality and report faults to
CORBA-FT’sfault notifier, which is discussed in Section18.5.

18.2. WRITING CORBA-FT SERVERS 171

18.1.4 TheReplicationManager Interface

As stated previously, theReplicationManager interface inherits from
ObjectGroupManager , GenericFactory and PropertyManager .
It also defines two new operations:register fault notifier() and
get fault notifier() . A fault notifier (interfaceFaultNotifier)
is an object that is used for reporting faults. A discussion of fault notifiers is
provided in Section18.5.

An implementation of CORBA-FT provides an infrastructure process that
contains aReplicationManager object, and application programs can
connect to this by passing"ReplicationManager" as a parameter to
resolve initial references() . The replication manager object ap-
pears to application programmers as a single object. However, in reality it is
replicated so that it is not a single point of failure. The CORBA-FT speci-
fication requires that there must not be any single points of failure within an
implementation of CORBA-FT.

18.2 Writing CORBA-FT Servers

18.2.1 Modifications to IDL Interfaces

The first step in making a fault-tolerant server is to ensure that the IDL inter-
faces of objects implemented by a server inherit from appropriate interfaces
defined by CORBA-FT. As an example, let us assume that a server is to imple-
ment an interfaceFoo, and also afactory interface (Section1.4.2.1on page9)
for it calledFooFactory . The IDL for the server might be written as shown
in in Figure18.2.

The PullMonitorable interface defines anis alive() operation.
This is a “ping”-style operation that is periodically invoked by the CORBA-
FT infrastructure to check which replicas of an object are alive. A servant
can trivially implement this so that it always returnstrue to indicate that is is
alive. Alternatively, a servant’s implementation of this operation could perform
application-specific health checks to ensure that the server process (or related
hardware) is in a consistent state, and returntrueonly if this is the case.

TheCheckpointable interface defines operations,get state() and
set state() , that are used to get and restore the “state” (for example, in-
stance variables) of an object. The state is represented as binary data (that is,
sequence<octet>), and it is the responsibility of the server developer to
convert an object’s state to and from this binary format.

An IDL interface can optionally inherit fromUpdateable , which is a

172 CHAPTER 18. CORBA FAULT TOLERANCE

interface Foo
: FT::PullMonitorable , FT::Checkpointable

{
...
void destroy ();

};
interface FooFactory

: FT::PullMonitorable , FT::Checkpointable
{

Foo create (...);
};

Figure 18.2:Example IDL for a Server that uses CORBA FT

subtype ofCheckpointable . TheUpdateable interface defines two op-
erations calledget update() andset update() . An “update” is a delta
change in the state of an object since the last checkpoint.

Whether or not an IDL interface has to inherit fromCheckpointable
or PullMonitorable depends on the fault tolerance properties in effect
for objects of that type. In particular, the IDL interface must inherit from
Checkpointable if it uses theCONSINF CTRLpolicy along with either
theCOLDPASSIVEor WARMPASSIVEpolicies. Likewise, the IDL interface
must inherit fromPullMonitorable if it uses thePULL fault monitoring
style.

18.2.2 Creating and Destroying Replicated Objects

To implement a CORBA-FT server, a developer must write servant classes
that implement the server’s IDL interfaces—Foo and FooFactory in our
running example—andalsowrite a servant class for theGenericFactory
interface (shown previously in Figure18.1 on page166). This means that
theGenericFactory interface is implemented by the replication manager
infrastructure process (Section18.1.4) andalsoby every server process.

When a server wishes to create a replicated object—for example, in the
body of FooFactory::create() —it doesnot create the object locally.
Instead, what happens depends on the membership style being used.

If the MEMBINF CTRL membership style is being used then the server
calls create object() on theGenericFactory interface that is in-
herited by the replication manager. The replication manager then invokes
create object() on theGenericFactory objects in some of the server

18.2. WRITING CORBA-FT SERVERS 173

replicas. The implementation ofcreate object() in a server replica cre-
ates a normal CORBA object that is a member of (that is, replica in) the
object group. The replication manager then constructs an IOGR by com-
bining the contact details of the individual members. It is this IOGR that
FooFactory::create() returns to the client.

If the MEMBAPP CTRLmembership style is used then a server creates an
initially emptyobject group by invokingcreate object() on the replica-
tion manager. The server then must then do one of the following to populate
the object group with members:

• The server can repeatedly invokecreate member() on the replica-
tion manager, each time specifying a different location where a member
is to be created. The replication manager invokescreate object()
on the factories at each of the specified locations.

• The server can repeatedly invokecreate object() on factories in
different locations and then invokeadd member() on the replication
manager for each of these newly created replicas.

Thecreate object() operation has anout parameter that is used to
associate an identifier with a newly created object. This identifier is unique
within the factory that creates the object. It is the responsibility of the caller
to remember this identifier and to pass it as a parameter when later calling
delete object() .

When a server wishes to destroy a CORBA object, for example, in the body
of Foo::destroy() , it invokesdelete object() on theGeneric-
Factory object in the replication manager. The replication manager then
invokesdelete object() on theGenericFactory objects in the server
replicas so that each member of the object group can be destroyed.

18.2.3 Registering Server Replicas with CORBA-FT

The mainline of a CORBA-FT server should create one or moreGeneric-
Factory objects and export their object references to, say, a file or the Nam-
ing Service.

Developers need to write a utility (or perhaps use a proprietary utility pro-
vided with a CORBA-FT implementation) that registers properties for the fault
tolerant application with the replication manager. Some of these properties will
be details of factories and their locations for each IDL interface type. This re-
quirement to register factories is the reason why each CORBA-FT server needs
to be able to export an IOR for its own factories.

174 CHAPTER 18. CORBA FAULT TOLERANCE

Having registered a system’s properties with the replication manager, a util-
ity could then invokecreate object() on the replication manager to cre-
ate an object group (this is assuming that the application uses theMEMBINF
CTRL membership style). The IOGR obtained from this can then be made
available to clients via, say, the Naming Service.

18.3 CORBA-FT Support in Clients

An IOGR contains an embeddedTaggedComponent (Section10.2.3 on
page108) that indicates the object reference is for an object group rather than
for a “normal” object. When the client-side CORBA runtime system encoun-
ters thisTaggedComponent then it enables client-side CORBA-FT capabili-
ties that enhance the end-to-end fault tolerance of the system. Clients built with
a non-FT implementation of CORBA ignore theTaggedComponent . Such
clients can still communicate with a CORBA-FT server, but they are not able to
take advantage of all the fault tolerance capabilities provided by CORBA-FT.

18.3.1 Keeping IOGRs Up to Date

TheTaggedComponent embedded in an IOGR records a version number for
the IOGR. Whenever the set of members for an object group changes (for ex-
ample, when a member dies or is restarted), the replication manager updates the
version number of the IOGR and notifies infrastructure in CORBA-FT servers
of the updated version number. Each time a CORBA-FT client makes a re-
mote call, aservice context(Section11.6on page119) is used to transmit the
IOGR’s version number along with the request. The CORBA-FT infrastructure
in the server compares the version number in the received service context to the
version number that it has.

• If the client’s version number matches the server’s version number then
this means that the client has an up-to-date IOGR and so the incoming
request is dispatched as normal.

• If the client’s version number is less than the server’s version number
then this means that the client has an out-of-date IOGR. In this case,
the CORBA-FT infrastructure in the server doesnot dispatch the in-
coming request. Instead, it sends a redirection message (Section11.4
on page117) back to the client to provide the client with an up-to-date
IOGR. The CORBA runtime system in the client then resends the request
using the new IOGR.

18.3. CORBA-FT SUPPORT IN CLIENTS 175

• If the client’s version number is larger than the server’s version number
then this means that the server’s version is out of date. In this case, the
CORBA-FT infrastructure in the server contacts the replication manager
to obtain the most recent version of the IOGR before dispatching the
incoming request.

The purpose of this version number protocol is to increase the likelihood that
an IOGR held by a client contains contact details for only the currently-alive
members of the object group. By omitting contact details for currently-dead
members from the IOGR, CORBA-FT reduces the likelihood that clients will
waste time trying to communicate with currently-dead members.

18.3.2 Making Sure Clients Invoke on Primary Members

If an object group uses theCOLDPASSIVE or WARMPASSIVE replication
styles then one of the profiles (sets of contact details) in its IOGR contains a
TaggedComponent (Section10.2.3on page108) to indicate which is the
primary member of the object group. Ideally, the CORBA runtime system in
a client should use thisTaggedComponent as a strong hint regarding to
which member of the object group it should send its requests. However, the
client will ignore this hint if the client has been built with a non-CORBA-FT
product. Even if the clienthasbeen built with a CORBA-FT product, the hint
might be out of date, because there might have been a failover that resulted in
a different member of the object group becoming the new primary member.

If a request is sent to a backup member of an object group then CORBA-FT
infrastructure in the backup server uses a redirection message (Section11.4on
page117) to redirect the client to the primary member.

18.3.3 Transparent Retries of Failed Invocations

As will be discussed in Section18.4, CORBA-FT infrastructure in servers log
all request and reply messages. A CORBA-FT client transmits aFT REQUEST
service context with each request. This service context contains a string that
uniquely identifies the client, an integer that uniquely identifies the request
(within that client) and an expiration time. When a server receives a request
that contains aFT REQUESTservice context, the CORBA-FT infrastructure
checks to see if there a request message with an identical service context in
the log. If there is then the incoming request is not executed; instead, the
corresponding reply message from the log is transmitted back to the client.
The purpose of this mechanism is to allow the runtime system of a CORBA-

176 CHAPTER 18. CORBA FAULT TOLERANCE

FT client to perform automatic retries of failed invocations while preserving
at-most-once invocation semantics.

18.3.4 Heartbeat Messages

TCP/IP (upon which IIOP is based) does not cope very well with some types
of disruptions to a network. For example, if a client process is connected to a
server process via TCP/IP then the client will be notified promptly if the server
process dies but willnot be notified promptly if the server’s machine fails or is
abruptly disconnected from the network. In such cases, the client process may
wait for a long time (perhaps even forever) for a reply from the server. This
problem can be solved by setting round-trip timeouts in the client. However,
doing this for each request can be laborious, even if you know approximately
how long a particular invocation should take.

CORBA-FT provides an alternative mechanism for detecting network fail-
ures in a timely manner. This mechanism involves the CORBA-FT infrastruc-
ture in a client periodically sending ping-style messages to CORBA-FT servers.
When a CORBA-FT server receives one of these messages (calledheartbeat
messages in CORBA-FT terminology), the CORBA-FT infrastructure in the
server doesnot dispatch the request to an object. Instead, the CORBA-FT in-
frastructure itself sends back a reply to the client. The intention of avoiding a
dispatch to the target object is that the heartbeat messages are to check network
connectivity only rather than whether or not an object is alive.

Whether or not heartbeat messages are transmitted is determined by a client-
sidepolicy (Section16.1on page145). The policy also specifies the frequency
with which heartbeat requests are transmitted and the timeout period for re-
ceiving a reply.

18.4 Logging and Recovery Infrastructure

Each CORBA-FT server has some built-in infrastructure called thelogging
mechanismand recovery mechanism. These pieces of infrastructure are pro-
vided by a CORBA-FT implementation, but CORBA-FT doesnot define IDL
interfaces for them because they are not invoked directly by application code.

The logging mechanism is responsible for persistently logging the request
messages that arrive for an object and the reply messages sent after invocations
have completed. It also logs the periodic checkpoints (and possible updates) of
the primary member of an object group. The log can be accessed in a distrib-
uted manner. The details of how this is achieved is an implementation detail,

18.5. FAULT NOTIFIERS 177

but one possible way is for the log to be written to a replicated database; another
possible technique is for each host to maintain the log in local volatile storage
and use a reliable, totally-ordered multicast protocol to send log updates to the
other hosts.

If the COLDPASSIVE or WARMPASSIVE replication style is used and
the primary member of an object group dies then a backup member is promoted
to be the primary member. When this happens, the recovery mechanism is
used to bring the state of that member up-to-date. The recovery mechanism is
also used in theCOLDPASSIVE or ACTIVE replication styles when a new
member is introduced to the group.

When the recovery mechanism is used, it analyses the log and callsset
state() on the relevant object member to initialize it to the last checkpoint
state. Then it might callset update() to load the most recent “update” to
the object. Finally, it re-invokes the request messages that are more recent than
the last checkpoint/update to bring the object fully up to date.

In order to conserve space, the logging mechanism compacts the log pe-
riodically. In particular, whenever a new checkpoint of an object is obtained,
previous checkpoints and request/reply messages that are older than the new
checkpoint can usually be removed from the log. Likewise, whenever a new
update is obtained by callingget update() then older updates and request/
reply messages can usually be removed from the log. The only exception to this
is that some request/reply messages may be retained if the expiration time in
theFT REQUESTservice context in the request has not yet occurred. This is to
support the transparent retry of failed invocations discussed in Section18.3.3.

18.5 Fault Notifiers

An implementation of CORBA-FT contains some infrastructure called afault
monitor or fault detector—these two terms are used interchangeably within
the CORBA-FT specification. A fault monitor has the task of detecting faults.
CORBA-FT does not define an IDL interface for the fault monitor because it
is not invoked directly by users. To aid scalability, there may be several fault
monitors within a CORBA-FT deployment: typically one on each host where
CORBA-FT servers run. Fault monitors can check for faults by invoking the
is alive() operation on object members.

When a fault monitor detects a fault, it needs to report it to the replication
manager and possibly also to user-written applications that might, for example,
analyze reports and show summaries of them on a graphical display. The OMG
decided that the mechanism used to report faults should be based on concepts in

178 CHAPTER 18. CORBA FAULT TOLERANCE

the Notification Service (Section22.3on page214). The Notification Service
itself was considered to be complex enough that it would be difficult to imple-
ment all of its functionality in a fault tolerant way. Instead, the bare minimum
subset of Notification Service-style functionality required for CORBA-FT was
extracted and repackaged in theFT::FaultNotifier interface, which is
shown in Figure18.3.

module FT {
...
interface FaultNotifier
{

typedef unsigned long long ConsumerId ;
void push structured fault (

in CosNotification::StructuredEvent event);
void push sequence fault (

in CosNotification::EventBatch event);
ConsumerId connect structured fault consumer (

in CosNotifyComm::StructuredPushConsumer
push_consumer);

ConsumerId connect sequence fault consumer (
in CosNotifyComm::SequencePushConsumer

push_consumer);
void disconnect consumer (

in ConsumerId connection) raises(...);
void replace constraint (

in ConsumerId connection,
in CosNotification::EventTypeSeq event_types,
in string constr_expr);

};
};

Figure 18.3:TheFT::FaultNotifier interface

Application code can obtain a reference to the fault notifier by invoking
resolve initial references("ReplicationManager") to con-
nect to the replication manager and then invokingget fault notifier()
on it.

A fault monitor doesnot need to explicitly register with the fault notifier.
Instead, once a fault monitor has a reference to the fault notifier, it can in-
vokepush structured fault() to send a single fault event to the fault
notifier. Alternatively, it can invokepush sequence fault() to send a
sequence of fault events to the fault notifier.

18.6. CRITIQUE 179

An application that wants to receive fault eventsdoesneed to register with
the fault notifier. It can do this by invokingconnect structured fault
consumer() if it wants to receive fault events one-at-a-time. If an applica-
tion prefers to receive fault events batched up in a sequence then it invokes
connect sequence fault consumer() . Both of these operations re-
turn a ConsumerId that is later passed as a parameter todisconnect
consumer() to disconnect the consumer from the fault notifier.

By default, a consumer of fault events receivesall the events. However,
once connected, a consumer can invokereplace constraint() to spec-
ify a constraint that the fault notifier uses to filter out unwanted events (Sec-
tion 22.3.4.1on page218).

The CORBA-FT specification gives precise details of the information that
is contained inside a fault event. The information includes thelocation, IDL
interfacetypeandobject group idof the object that failed.

The replication manager registers itself with the fault notifier as a consumer
of fault events. Developers can write their own applications that also register
with the fault notifier as consumers of fault events. Such applications, for ex-
ample, might analyze faults (based on location, frequency and so on) or show
summaries of faults on a graphical display. A fault monitor does not know
how many consumers are connected to the fault notifier. A fault monitor sim-
ply pushes its fault events to the fault monitor and, in turn, the fault monitor
pushes the fault events to all registered consumers.

18.6 Critique

CORBA-FT defines alot of infrastructure. Because of this, at first sight it ap-
pears that CORBA-FT is very complex. However, most of this infrastructure
is pre-implemented by a CORBA-FT product and it works behind the scenes.
Only a relatively small amount of the infrastructure is visible to, or must be im-
plemented by, developers. This means that CORBA-FT is not as complex as it
first seems. However, there is no doubt that CORBA-FTis more complex (and
also more powerful) than the proprietary fault tolerance mechanisms discussed
in Chapter17.

Use of CORBA-FT affects the design and coding of applications. Because
of this, it is best if CORBA-FT is designed into an application from the start,
rather than being retrofitted to an existing application as an afterthought. In
contrast, most proprietary fault tolerance mechanisms are enabled via configu-
ration rather than via coding. This means that, quite often, use of a proprietary
fault tolerance mechanism can be retrofitted to an existing application quite

180 CHAPTER 18. CORBA FAULT TOLERANCE

easily.
Perhaps the biggest drawback of CORBA-FT is that it is an optional part of

the CORBA specification and, unfortunately, most CORBA products neglect
to implement it. The author is aware of only one CORBA implementation,
TAO, that currently implements CORBA-FT; of course, there could be other
CORBA-FT implementations of which the author is not aware.

Chapter 19

Other CORBA
Infrastructure

This chapter briefly mentions some other optional parts of CORBA infrastruc-
ture that have not been discussed in this book. Interested readers can find
details in the CORBA specification (available fromwww.omg.org) and in
manuals for products that support these capabilities.

19.1 Real-time CORBA

As its name suggests, the Real-time CORBA specification is CORBA with
several extensions that make it suitable for use in real-time applications. The
author is not aware of any books that specifically address real-time CORBA
programming. There is, of course, the specification document for Real-time
CORBA, which is available from the OMG web site, and any CORBA product
that implements this standard is likely to have additional information in its
manual.

19.2 CORBA for Embedded Systems

The core part of CORBA has so many capabilities that an implementation of
CORBA is likely to occupy several megabytes of memory. While modern desk-
top computers have sufficient RAM to run CORBA-based applications, many
embedded systems have much smaller amounts of memory. In order to tailor

181

182 CHAPTER 19. OTHER CORBA INFRASTRUCTURE

CORBA for the constrained RAM of embedded devices, several CORBA ven-
dors offer the ability to “subset” CORBA functionality so that if an CORBA-
based application uses just a subset of CORBA’s functionality then the applica-
tion can be linked with a proportionally smaller CORBA library. Some vendors
have managed to squeeze a useful subset of CORBA into less than 100KB.

The Minimum CORBAspecification is an OMG-standardized subset of
CORBA functionality that is thought to be useful in embedded systems. The
intention of defining a standardized subset of CORBA functionality is that it
provides source-code portability for applications that use a subset of CORBA.
However, the Minimum CORBA specification has received criticism, as some
feel that the subset it defines is still too large for many embedded systems. For
this reason, CORBA vendors who specialize in embedded systems usually of-
fer their own proprietary subsets of CORBA functionality in order to minimize
memory requirements.

19.3 CORBA Component Model (CCM)

In recent years, there has been a growing realization that many applications
contain not just “business logic” code but also a lot of “infrastructure code” to
perform tasks such as security, transactions and persistence of data. In fact, the
amount of infrastructure code in an application often outweighs the amount of
business-logic code. Needless to say, this is an unfortunate imbalance because
the need to write vast quantities of infrastructure code increases the cost of
application development.

One of the important capabilities of J2EE (Java 2, Enterprise Edition) is an
application server: this specializes in providing infrastructure services that are
commonly used with business-logic code. The intention is that developers can
focus their efforts on writing business-logic code without having to worry about
the supporting infrastructure code. The business-logic code is packaged into a
JavaBean1 and this can then be deployed into a J2EE application server. The
deployment is achieved by having the J2EE application server read adeploy-
ment descriptor, which is an XML document that specifies which JavaBean
class should be dynamically loaded, and which infrastructure services (such as
transactions or security) should be applied to it.

1 A lot of terminology associated with the Java programming language is based on terminology
associated with coffee, without any regard for whether or not the terminology has an obvious
meaning in computers. The termJavaBean, which is a contraction ofJava coffee bean, has no self-
evident meaning for its use in computers. A JavaBean is a class that encapsulates some business-
logic code.

19.3. CORBA COMPONENT MODEL (CCM) 183

The CORBA Component Model (CCM) is a generalization of the concept
of a J2EE application server. It is a generalization because CCM aims to pro-
vide application server functionality for business-logic code that is written in
an arbitrary language, not just Java. CCM is part of the newest CORBA spec-
ification (3.0). There are several implementations of CCM available—some
from CORBA vendors and some from third-party companies—but it is still too
early to predict whether CCM will achieve a lot of popularity or if it is destined
to be a niche product area. A very readable and detailed overview of CCM can
be found in thePure CORBAbook [Bol01].

184 CHAPTER 19. OTHER CORBA INFRASTRUCTURE

Part V

CORBA Services

185

Chapter 20

Trading Service

CORBA provides several ways for a server to advertise an object reference.
One way, discussed in Section3.4.2on page34, is for the server to stringify an
object reference and write it to, say, a file. Another approach is for the server to
advertise the object reference in the Naming Service (Chapter4). This chapter
discusses a third approach, called the Trading Service.

Just as the Naming Service is often compared to the white pages telephone
book, the trading service is often compared to the yellow pages telephone book.
The yellow pages contains numerousadvertisementsorganized into different
categories(such asBuilders, Plumbersand Restaurants), while the Trading
Service contains numerousservice offersthat are organized by theirservice
offer types. Each advertisement in the yellow pages provides contact details
(address and telephone number) for a company along with a description of
the company (for example, “open 24 hours” or “cheapest prices in town”).
Similarly, eachservice offerin the Trading Service provides contact details (an
IOR) along with a description of the service offered by the object.

20.1 TheServiceTypeRepository Interface

Figure20.1shows a simplified version of theServiceTypeRepository
IDL interface. There are several simplifications in this interface, and the inter-
faces shown later in this chapter:

• Theraises clause on operations has been omitted.

• Sometypedef statements have been removed. For example, thename
parameter toadd type() is shown as being of typestring . In

187

188 CHAPTER 20. TRADING SERVICE

the real IDL definition, it is actually atypedef of a typedef of a
string .

• Some of the parameters of operations and fields of structs are shown as
being of ananonymous sequencetype, such assequence<string> .
Use of anonymous sequences is illegal for parameter types and is depre-
cated for the types of fields in structs. The use of these anonymous types
was done in order to avoid using extratypedef statements, and so to
make the IDL listings more concise.

As mentioned earlier, the yellow pages telephone book groups the de-
tails of different companies into categories such aselectriciansandplumbers.
The Trading Service equivalent of a “category” is aCosTradingRepos::
ServiceTypeRepository::TypeStruct , although this is normally re-
ferred to as aservice offer type. TheServiceTypeRepository interface
is used to define service offer types.

20.1.1 Theadd type() and remove type() operations

The add type() operation is used to define a new service offer type. The
nameparameter specifies the name of the category, for example,"Printer" .
The if name parameter specifies arepository id(Section9.4 on page102)
for the IDL interface associated with this service offer type. Some readers may
wonder why the service offer type’sname is not hard-coded to be the same
as the repository id for its interface. The reason is to allow thename to be
easier to read than a repository id. For example,"Printer" is easier to read
than"IDL:acme.com/Equipment/Printer:1.0" . Inheritance is, of
course, allowed. For example, the repository id in the previous sentence de-
notes an IDL interface calledEquipment::Printer . An object of this
type,or a sub-type of it, can be used in a"Printer" service offer.

The props parameter specifies a sequence of properties that are associ-
ated with the service offer type. This is where the analogy between the Trading
Service and the yellow pages telephone book starts to break down. Some adver-
tisements in the yellow pages may boast claims about a company such as “open
24 hours”, “all work has a 12-month guarantee” or “cheapest prices in town”.
However, the yellow pages doesnot make any requirements about what claims
shouldbe made in an advertisement in the yellow pages. In contrast, a ser-
vice offer type in the Trading Servicedoesspecify whatproperties(“claims”)
eachservice offer(“advertisement”) should have. Each property (specified by
the PropStruct type) has a name, a type1 (such aslong , boolean or

1 The type is specified as aTypeCode , which is discussed in Section15.2on page139.

20.1. THESERVICETYPEREPOSITORYINTERFACE 189

module CosTradingRepos {
interface ServiceTypeRepository {

enum PropertyMode {
PROP_NORMAL, PROP_READONLY,
PROP_MANDATORY, PROP_MANDATORY_READONLY};

struct PropStruct {
string name;
CORBA::TypeCode value_type;
PropertyMode mode;

};
typedef sequence<PropStruct> PropStructSeq ;
struct IncarnationNumber {

unsigned long high;
unsigned long low;

};
struct TypeStruct {

string name;
PropStructSeq props;
sequence<string> super_types;
boolean masked;
IncarnationNumber incarnation;

};
...
readonly attribute IncarnationNumber incarnation ;
IncarnationNumber add type (

in string name,
in string if_name,
in PropStructSeq props,
sequence<string> super_types)

raises(...);
void remove type (in string name) raises(...);
void mask type (in string name) raises(...);
void unmask type (in string name) raises(...);
...

};
};

Figure 20.1:Pseudo IDL Extract ofServiceTypeRepository

190 CHAPTER 20. TRADING SERVICE

string) and a mode. Themode field is anenum that specifies whether or
not the property is mandatory, and whether or not it is readonly.

The ServiceTypeRepository does not place any restriction on the
types of properties. However, it is usually best to stick to using integers, float-
ing point numbers, booleans, characters, strings and sequences of these types.
The reason for this is that the constraint language used to make queries on the
Trading Service provides full support for these types and only minimal support
for other types.2

Thesuper types parameter lists the names of parent service offer types.
A service offer type inherits the properties of its parents and is allowed to im-
pose more restrictions on inherited properties. In particular, an optional prop-
erty can be made mandatory, and a “normal” property can become readonly.

The return value ofadd type() is an IncarnationNumber , which
was intended to be a 64-bit integer. However, theunsigned long long
IDL type did not yet exist when the Trading Service was being defined so
a struct containing twounsigned long fields was used instead. The
IncarnationNumber is conceptually a timestamp to indicate when a ser-
vice offer type was defined. A list-style operation (not shown in Figure20.1)
can be used to list the service offer types defined since a particular incarnation
number.

Theremove type() operation removes a service offer type.

20.1.2 Themask type() and unmask type() operations

Themask type() operation is used tomask(hide) a service offer type. This
has two uses. One use is to deprecate a service offer type, so that the Trading
Service will not accept any moreservice offers(advertisements) for the speci-
fied service offer type. Another use is to indicate that the service offer type is
anabstract base typethat cannot be instantiated directly, but from which other
service offer types can inherit. Theunmask type() operation unmasks a
type that was previously masked withmask type() .

20.2 TheRegister Interface

When a service offer type has been defined, it is then possible for applications
to actuallyexport(advertise) an object reference in the Trading Service. This
is done through theRegister IDL interface (Figure20.2).

2 If a property is of a user-defined type then a constraint can check whether or not the property
exists in a service offer, but the constraint cannot examine the value of the property.

20.2. THEREGISTERINTERFACE 191

module CosTrading {
struct Property {

string name;
any value;

};
typedef sequence<Property> PropertySeq ;
struct Offer {

Object reference;
PropertySeq properties;

};
typedef sequence<Offer> OfferSeq ;
interface Register

: TraderComponents, SupportAttributes
{

string export (
in Object reference,
in string type,
in PropertySeq properties) raises(...);

void withdraw (in string offer_id) raises(...);
void modify (

in string offer_id,
in sequence<string> del_list,
in PropertySeq modify_list

) raises(...);
...

};
};

Figure 20.2:Pseudo IDL Extract ofRegister

20.2.1 Theexport() and withdraw() operations

The export() operation is used to create aservice offer, that is, an adver-
tisement for an object. Parameters to this operation specify an object reference,
the service offer type that it matches, and its properties. The supplied proper-
ties must match those specified by the service offer type. The return value
from export() is a uniquestring that denotes an offer id. This offer id
can later be used towithdraw the advertisement ormodifysome of its (non-
readonly) properties.

Thewithdraw() operation is used to withdraw (that is, delete) a service
offer.

192 CHAPTER 20. TRADING SERVICE

20.2.2 Themodify() operation

Themodify() operation is used to delete or modify some properties associ-
ated with a service offer. An exception is thrown if an attempt is made to delete
a mandatory property. Likewise, an exception is thrown if an attempt is made
to modify a readonly property.

20.3 TheLookup Interface

TheLookup interface (Figure20.3) has just one operation, calledquery() .
This operation is used to retrieve service offers (advertisements) from the Trad-
ing Service that match a specified constraint.

The constraint parameter is a boolean expression that refers to the
properties of service offers. For example, let us assume that aPrinter
service offer type defines an integer property calledresolution and also
a sequence<string> property calledlanguages . The following con-
straint can be used to obtain a list of the printers that have a resolution of at
least 600 and support the PostScript printer language:

resolution >= 600 && "PostScript" in languages

Thein operator tests if the value specified on the left ("PostScript") is in
the sequence specified on the right (languages). Constraints are specified in
the syntax of theTrader Constraint Language(TCL), which is defined as part
of the Trading Service specification.

There may be several service offers that are matched by the specified con-
straint. Details of these are returned through severalout parameters. In par-
ticular, theoffers parameter provides details of the firsthow many matched
service offers. If there are more then these can be accessed by invoking opera-
tions on the returnedoffer iter iterator (Section1.4.2.3on page10) object
reference. The application that performs the query may be interested in seeing
some of the properties of the matched service offers. Thedesired props
parameter is used to specify which properties should be accessible through
offers andoffer iter .

Thepreference parameter is used to specify an ordering of the obtained
service offers. For example,"max resolution" orders the offers by the
resolution of the printers, while"random" provides the service offers in a
random order, which might be useful if you want to use the Trading Service to
load-balance many clients over several server processes.

20.3. THELOOKUPINTERFACE 193

module CosTrading {
struct Property {

string name;
any value;

};
typedef sequence<Property> PropertySeq ;
struct Offer {

Object reference;
PropertySeq properties;

};
typedef sequence<Offer> OfferSeq ;
interface OfferIterator {

boolean next n(in unsigned long n,
out OfferSeq ids) raises(...);

...
};
interface Lookup

: TraderComponents, SupportAttributes,
ImportAttributes

{
enum HowManyProps {none, some, all };
union SpecifiedProps switch (HowManyProps) {

case some: sequence<string> prop_names;
};
...
void query (

in string service_type_name,
in string constraint,
in string preference,
...
in SpecifiedProps desired_props,
in unsigned long how_many,
out OfferSeq offers,
out OfferIterator offer_iter,
...) raises(...);

};
};

Figure 20.3:Pseudo IDL Extract ofLookup

194 CHAPTER 20. TRADING SERVICE

20.4 Other Capabilities of the Trading Service

The Trading Service has several other important capabilities that I briefly men-
tion here.

It is possible to join several Trading Services so that a query made to one
Trading Service can propagate through the other Trading Services too. The
Trading Service specification refers to this aslinkingor federatingseveral Trad-
ing Services.

Most properties in a service offer will have static (that is, unchanging) val-
ues. For example, theresolution of a Printer is normally unchanging.
However, the Trading Service allows for a property to bedynamic. A dynamic
property is implemented with a reference to acallback object(Section1.4.2.2
on page10). When carrying out a query, the Trading Service invokes upon the
callback object to obtain the current value of the desired property. Dynamic
properties can be useful to denote, say, thequeue length of aPrinter .

Further discussion of the above-mentioned capabilities is outside the scope
of this chapter. Interested readers can find a more detailed discussion in other
books [HV99, BVD01].

20.5 Using the Trading Service

The functionality of the Trading Service is spread over many IDL interfaces.
This may lead you to think that there is a lot of programming involved in using
the Trading Service. However, this need not be the case, as I now discuss.

Although it is not required by the Trading Service specification, each ven-
dor is likely to provide command-line utilities and/or a graphical program that
encapsulates the functionality of the IDL interfaces. These command-line utili-
ties and/or graphical programs make it possible to do most of the administration
of the Trading Service without having to do any coding. In particular:

• A command-line utility or graphical program can be used to add, remove,
mask, unmask and browse service offer types. This saves you from hav-
ing to write code that interacts with theServiceTypeRepository
interface.

• You could hard-code a server application toexport() a service offer
to the Trading Service. However, an alternative that involves much less
coding is to have the server write a stringified object reference to a file.
You can then use a command-line utility or graphical program to import
this IOR, construct a service offer from it, andexport() this service
offer to the Trading Service.

20.6. QUALITY OF SERVICE 195

This then reduces the coding burden to just applications that callquery() on
the Lookup interface. If an application has an interactive user then the user
may wish to view the properties of the returned offers and manually choose
one. For client applications in which interactive selection of returned offers is
undesirable, the client application could randomly choose one of the returned
offers. In fact, a command-line utility could be written that performs a query
(specified as a command-line argument) and then prints out a randomly-chosen
IOR from the returned offers. If a client application imports object references
by using theimportObjRef() utility function (Section4.3 on page43)
provided in theCORBA Utilitiespackage [McH, Ch. 2] then the client need
not be hard-coded to invoke the APIs of the Trading Service. Instead, the
client can pass aninstructions parameter toimportObjRef() that
tells it to execute the command-line utility and interpret its standard output as
an stringified object reference.

Applications connect to theLookup interface of the Trading Service by
calling resolve initial references("TradingService") . All
the functional interfaces of the Trading Service inherit from some base in-
terfaces. These base interfaces provide readonly attributes that provide ac-
cess to the other interfaces of the Trading Service. So, for example, once
an application usesresolve initial references() to connect to the
Lookup interface, the application can then invoke an attribute to navigate to
theRegister or ServiceTypeRepository interface.

20.6 Quality of Service

The Trading Service specification does not make any requirements about how
an implementation stores details of service offer types and service offers.

Some implementations of the Trading Service store information only in
RAM. These implementations are useful in embedded systems that do not have
persistent storage, but are less desirable in computers that do have persistent
storage because you would have to re-populate the Trading Service every time
it dies and is restarted.

Some implementations of the Trading Service that store information per-
sistently make use of plain files. This is fine for a small deployment but it may
not scale well, and there is the possibility of information being corrupted if the
Trading Service is killedwhileupdating information in a file.

Some other implementations of the Trading Service store information in
a database. This provides greater reliability than use of plain files but may
involve extra administration overhead.

196 CHAPTER 20. TRADING SERVICE

The functionality of the Trading Service specification is split over many
IDL interfaces, and the Trading Service specification doesnot require that all
the interfaces be implemented. Instead, some of the functionality of a Trading
Service is optional. This makes it possible for a vendor to make trade-offs be-
tween how much functionality is provided by an implementation of the Trading
Service and the amount of resources (RAM, disk space, CPU speed and so on)
that it consumes.

If you decide to use a Trading Service in your applications then it is im-
portant to ask your Trading Service vendor how it stores data and whether it
implementsall the functionality of the Trading Service or a particular subset of
functionality. Be sure to pick a Trading Service that offers a quality of service
that is suitable for your needs.

Chapter 21

Object Transaction Service

21.1 Associating CORBA Objects with Database
Records

When designing a CORBA server that interacts with a database, you might
decide to have a separate CORBA object for each record in a database table.
To do this, you need to associate a CORBA object with the corresponding
record in the database. This is easily achieved by storing theprimary keyof the
database record in theobject id(Section5.6.1) of the CORBA object.

You could have a separateservant (Section5.2) for each CORBA ob-
ject/database record. If you do this then you might wish to store the object
id in an instance variable of the servant. However, it is unusual for servants to
cache any information from the database in instance variables. This is because
of the risk that the cached information would become stale if the database was
ever updated directly rather than being updated via the CORBA server. Having
a separate servant for each record in a database table, where theonly instance
variable in each servant is an object id (acting as a primary key into a database
table) is wasteful of memory. A more scalable approach is to use onedefault
servant(Section5.6.4on page55) to representall the CORBA objects. The
default servant can call theget object id() operation on thePOACurrent
(Chapter13) to find out which CORBA object it is representing for the current
request. The default servant then uses this object id as the primary key into a
database table.

197

198 CHAPTER 21. OBJECT TRANSACTION SERVICE

21.2 Per-operation Transactions

In many client-server systems, the body of IDL operations are implemented as
shown in the pseudocode below:

void some_operation(...)
{

begin_transaction();
... // query or update a record in the database
commit_transaction();

}

Note that the entire transaction is contained within the body of a single IDL
operation. This is often called aper-operationtransaction. If you intend to
write a CORBA server whose use of transactions is restricted to per-operation
transactions then how you interact with the database is completely independent
of your use of CORBA. For example, you can use whatever brand of database
you want, and you can interact with that database using whatever techniques
you want, such as embedded SQL, Oracle OCI, ODBC or JDBC.

The use of per-operation transactions is sufficient for a great many applica-
tions. However, some client-server systems require the ability for a transaction
to spanmultipleoperation calls from a client to one server. This type of interac-
tion requires use of the CORBA Object Transaction Service (OTS). Some other
client-server interactions involve access to multiple databases. These types of
transactions are usually calleddistributed transactions, and they also require
use of OTS.

21.3 Overview of Distributed Transactions

The concept of a distributed transaction pre-dates CORBA, and is independent
of any one particular kind of middleware. Let us assume that a client wishes a
transaction to span queries and updates on two databases. In order to do this,
the client makes use of a transaction manager (TM), as shown in Figure21.1.

When the client wants to begin a transaction, it sends a request to the TM
(step 1). The TM sends back an identifier that uniquely identifies the newly-
started transaction. The client then sends its query and/or update requests to the
databases or, in a middleware system like CORBA, to the server processes that
wrap the databases; this is shown in steps 2 and 3. The transaction identifier is
transmitted as part of these requests. Whenever a database (or a server process
that wraps the database) is accessed by the client, the database (server) uses
the received transaction identifier to tell the TM that it (the database/server)

21.3. OVERVIEW OF DISTRIBUTED TRANSACTIONS 199

1 begin transaction

DB1

DB2

transaction
manager

client

2 query/update

2a register

3a register
4 commit t

ransaction

3 query/update

Figure 21.1:A distributed transaction

DB1

DB2

transaction
manager

5 prepare

6 commit/rollback

Figure 21.2:Two-phase commit

is taking part in the transaction (steps 2a and 3a). The TM uses a persistent
storage area (for example, a file or its own database) to keep track of which
databases/servers are taking part in which transactions. Finally, the client no-
tifies the TM that it wishes to commit the transaction (step 4). To avoid too
much clutter in a single diagram, the rest of the interaction steps are shown
in Figure21.2. The TM engages in atwo-phase commitdialog with all the
databases/servers that have taken part in the transaction.

In the first phase of the two-phase commit protocol, the TM asks each
database/server toprepareto commit. Each database/server prepares itself by
persisting any updates to disk, but in a way that it canundo the changes (for

200 CHAPTER 21. OBJECT TRANSACTION SERVICE

example, the database might persist not just changes but also details of how to
undo the changes). The database/server then replies to the TM that it is voting
to eithercommitor rollback the transaction.

In the second phase of the two-phase commit protocol, the TM analyses all
the votes from the databases/servers. Ifall the votes are tocommitthen the TM
instructs each database/server to commit its changes. Ifanyof the votes were
to rollback the transaction then the TM instructsall the databases/servers to
undo any changes made during the prepare phase. Finally, the TM can delete
details about the just-completed transaction from its own persistent store.

If the system ever crashes then when the system is restarted, the TM ex-
amines its persistent storage of details about transactions in progress. Using
this information, the TM can instruct databases/servers torollback any trans-
actions that had not reached the commit phase before the crash occurred. The
TM can also replay the final outcome of the two-phase commit protocol for any
transactions that were in the process of committing when the crash occurred.

The Open Group (www.opengroup.org), which is sometimes referred
to as X/Open, has defined some open standards for distributed transactions.
One of these standards, called XA, is a C-based API that a transaction manager
can use to interact with aresource manager(most commonly a database) to
implement the two-phase commit protocol. The importance of this standard
is that it allows a transaction manager to coordinate a distributed transaction
not just across multiple databases, but also across multiplebrand namesof
databases. Section21.4will discuss how CORBA leverages the XA standard
to allow CORBA applications to take part in distributed transactions. However,
before discussing that, there are two other points worth noting.

First, when designing a client-server system, it is comforting to know that
the middleware technology you are using makes itpossibleto use distributed
transactions if the need arises. However, usually it is preferable to design the
system in a way that uses only per-operation transactions rather than distrib-
uted transactions. One reason for this is that recovery after a crash during a
local transaction is much less burdensome than recovery after a crash during
a distributed transaction. Another reason is that local transactions tend to be
short-lived so database locks are held for a minimum amount of time. Such
short-lived transactions increase the possibility for concurrent access of the
database and so promote system scalability. In contrast, distributed transac-
tions tend to be longer-lived,especiallyif they involve user input, and this can
limit concurrent access and scalability. A final reason is that distributed trans-
actions have a higher overhead than local transactions (such as the overhead
of logging and the extra communication required by the two-phase commit
protocol).

21.4. CORBA OBJECT TRANSACTION SERVICE (OTS) 201

Second, theEnterprise CORBAbook [SGR99] devotes almost 100 pages
to discussing the use of databases in client-server applications. If you plan on
developing a client-server system that utilizes a database then you are advised
to read that book for its wealth of useful design advice.

21.4 CORBA Object Transaction Service (OTS)

TheObject Transaction Service(OTS) is a CORBA service (Section1.6) that
enables the use of distributed, two-phase commit transactions in CORBA appli-
cations. OTS consists of: (1) several IDL interfaces (most of which are defined
in a module calledCosTransactions), (2) some additional library code
that is linked into client and server applications, and (3) a transaction manager.
At first sight, the OTS specification can appear to be overly complex. There
are two reasons for this.

The first reason for the apparent complexity of OTS is because the OTS
specification defines not just the API that is used by “normal” developers; it
alsodefines the lower-level “plumbing” API that is used by vendors toimple-
mentOTS. The reason why the OTS specification defines the plumbing API
is that doing so ensures interoperability between different implementations of
OTS. This means that an OTS client built with one CORBA product can take
part in distributed transactions with OTS servers that are implemented with
different CORBA products.

The second reason for the apparent complexity of OTS is because its API
is flexible enough to allow transactional applications to be written in several
different ways. Most developers use a simple API that allows them to focus
on application-level logic, while leaving OTS to automatically perform several
house-keeping tasks. However, OTS does allow developers to take a more
hands-on approach andmanuallyhandle the required house-keeping tasks. The
fuller set of “hands-on” APIs makes it possible for developers to integrate OTS
with non-XA-compliant databases or to implement bridges from OTS to a non-
CORBA distributed transactional system.

Most of the OTS API is shown in Figure21.3. A few details outside the
scope of this chapter have been omitted from this figure. Also, theraises
clause on operations have been omitted for brevity. Section21.5discusses this
“raw” API of OTS. Then Section21.6discusses how OTS provides a simplified
API by building on top of other functionality in CORBA.

202 CHAPTER 21. OBJECT TRANSACTION SERVICE

interface TransactionFactory {
Control create (in unsigned long time_out);
...

};
interface Control {

Terminator get terminator ();
Coordinator get coordinator ();

};
interface Terminator {

void commit (...);
void rollback ();

};
interface Coordinator {

RecoveryCoordinator register resource (in Resource r);
...

};
interface RecoveryCoordinator {

Status replay completion (in Resource r);
};
interface Resource {

Vote prepare ();
void rollback ();
void commit ();
...

};
local interface Current : CORBA::Current {

void begin ();
void commit ();
void rollback ();
void set timeout (in unsigned long seconds);
unsigned long get timeout ();
Control get control() ;
Control suspend() ;
void resume (in Control which);

};

Figure 21.3:A subset of the OTS APIs

21.5. THE RAW API OF OTS 203

21.5 The Raw API of OTS

The Resource interface is a CORBA “wrapper” around a resource (data-
base). The operations defined on this interface are similar to the C-based API
of the XA standard. Implementations of OTS provide an implementation of
theResource interface that trivially delegates to the underlying XA C-based
API.1 This means that a server developer gets trivial integration between OTS
and an XA-compliant database. If server developers are using a database that is
not XA-compliant then they will have to implement theResource interface
for that database.

An implementation of OTS provides a transaction manager (TM). The
specification does not state if this should be packaged as, say, a server process
or as a library that can be linked into another application. However, it is com-
mon for the TM to be a stand-alone server process. Regardless of how it is
packaged, the TM contains pre-written implementations of several interfaces:
TransactionFactory , Control , Terminator , Coordinator and
RecoveryCoordinator .

The CORBA specification does not state how an OTS client connects to
the transaction factory in the TM, so the mechanism varies from one CORBA
product to another. However, the connection is likely to be made by calling
resolve initial references() . Use of this operation is discussed in
Section3.4.1on page33. The OTS client callsTransactionFactory::
create() to begin a transaction. This operation returns a reference to a
Control object.

The client must somehow communicate theControl object reference
when invoking an operation on an OTS-aware object. This could be achieved
by explicitly passing theControl reference as a parameter to the opera-
tion. However, it is more commonly achieved by embedding theControl
reference (along with other information) in aservice context(Section11.6on
page119) that is transmitted with the request. The OTS specification defines a
service context structure for this purpose.

When the client wants to terminate a transaction, it callsControl::
get terminator() to obtain a reference to theTerminator object and
then callscommit() or rollback() on this.

If an OTS server accesses an XA-compliant database then the server in-
vokes an OTS operation (not shown in Figure21.3) that puts aResource

1 Readers who wish to do Java-based OTS development may wonder howResource interacts
with a Java DataBase Connectivity (JDBC) driver. The answer is that JDBC drivers provide XA-
compliantDataSource objects. An implementation of theResource interface delegates to an
underlyingDataSource object.

204 CHAPTER 21. OBJECT TRANSACTION SERVICE

wrapper around the database. If the server uses a non-XA-compliant database
then the server developer must implement theResource interface so that its
database can take part in two-phase commit transactions.

In the original OTS specification, an object indicated that it could take part
in OTS transactions by implementing an IDL interface that inherited from
CosTransactions::TransactionalObject . The is a() opera-
tion (which is provided by the baseObject type) was used by a client appli-
cation to determine whether or not an object reference was for a transactionally
aware object. However, the OMG decided that this approach was undesirable.
In particular, it can result in a dramatic increase in the number of IDL inter-
face definitions.2 Eventually, the OMG decided that it would be be better if
whether or not an object was transactionally aware could be expressed as a
quality of service. In modern versions of the OTS, this goal is achieved by
defining a new POA Policy type (Section6.1.4on page64) that, if used, indi-
cates that objects in that POA are transactionally aware. An IOR interceptor
(Section14.1on page133) detects the presence of this POA policy and em-
beds an OTSTaggedComponent (Section10.2.3on page108) into IORs
that originate from that POA. A client application can check for the presence
of thisTaggedComponent to determine if an object is transactionally aware.

When an operation in an OTS-enabled server receives aControl ob-
ject, it can callget coordinator() to gain access to the transaction’s
Coordinator object. TheCoordinator interface is a “wrapper” around
the coordination logic that implements the two-phase commit protocol. Its pur-
pose is to interact with theResource objects in OTS servers. The server calls
register resource() on theCoordinator to register its resource (this
registration occurs only once per transaction). This informs the TM that the
server’sResource is taking part in the transaction and so should be included
in the two-phase commit protocol when the transaction commits. This opera-
tion returns a reference to aRecoveryCoordinator object for the trans-
action. The server stores this object reference in a persistent storage area so
that if the server crashes during the two-phase commit protocol and is restarted
then the server can contact theRecoveryCoordinator to determine if the
transaction should commit or roll-back.

During the two-phase commit, the TM invokes theprepare() operation
on all Resource objects that have taken part in the transaction. The return

2 For example, the interfaces that define the Naming Service didnot inherit from
CosTransactions::TransactionalObject , which meant that an implementation of
the Naming Service could not take part in a distributed transaction. To obtain an OTS-aware
Naming Service would have required defining a new set of IDL interfaces thatdid inherit from
CosTransactions::TransactionalObject .

21.6. HOW OTS BUILDS ON TOP OF OTHER PARTS OF CORBA 205

value of this operation is aVote that determines if the transaction will be
committed or rolled back.

21.6 How OTS Builds on Top of Other Parts of
CORBA

This section briefly discusses a simple subset of the API provided by OTS. This
simple subset is used by most OTS developers. The focus of this discussion is
not to act as a tutorial for developers, but rather to show how other aspects of
CORBA (such as current objects, portable interceptors and service contexts)
are used as building blocks for more powerful capabilities, such as OTS.

OTS defines aCurrent object (Chapter13). This object is accessed by
calling resolve initial references("TransactionCurrent")
(Section3.4.1on page33). The OTS Current object (defined in Figure21.3on
page202) lets threads in both client and server applications know with which
transaction they are currently associated.

An OTS client uses thebegin() , commit() androllback() opera-
tions on the Current object to control the lifetime of a transaction. Internally,
the Current object delegates to the corresponding operations defined on the in-
terfaces in the transaction manager. When a client invokes an operation on an
object, a portable request interceptor (Section14.2on page134) provided by
OTS embeds transactional context information obtained from the Current ob-
ject in a service context (Section11.6on page119) that is then transmitted with
the request to the target object. A corresponding portable request interceptor
in the server extracts this transactional context information from the service
context and initializes the server’s Current object before dispatching to the tar-
get operation. This means that the body of the operation executes within the
context of a transaction. Because of this, the operation doesnot need to begin-
and-commit or resume-and-suspend a transaction. Instead, these details are
taken care of by the portable interceptor and so the body of the operation can
focus on using, say, embedded SQL or JDBC to query/update the database.

The mechanism discussed above provides a simple API for developers and
it is powerful enough for the majority of applications. However, developers
can, if they so choose, avoid using the Current object and its associated portable
interceptor, and instead manually execute their own OTS-infrastructure code.
Although this is more complex, it provides a way for developers to integrate a
non-XA-compliant database with OTS.

206 CHAPTER 21. OBJECT TRANSACTION SERVICE

Chapter 22

Publish and Subscribe
Services

22.1 What is Publish and Subscribe?

The default communication model in CORBA is a call from one client to (an
object in) one server. This is oftenone-to-oneor point-to-pointcommunica-
tion. In contrast,publish and subscribe(often abbreviated topub-sub) com-
munication is where one application “publishes” (that is sends) a message on
a particulartopic, andall the other applications that have “subscribed” to this
topic receive the message. This is a form ofone-to-manycommunication, and
it is intrinsically asynchronous because the application that publishes a mes-
sage does not wait to get responses from those applications that receive the
message.

Computer mailing lists are good analogy for pub-sub communication. For
example, let us assume that the ACME company has mailing lists for staff
in different departments:eng-staff@acme.com reaches the Engineering
staff, sales-staff@acme.com reaches the Sales staff, and so on. The
following points are worth noting:

• If you send an email toeng-staff@acme.com then you (a “pub-
lisher”) have sent justonemessage, but it is received bymanypeople
(all the Engineering staff who are “subscribed” to the mailing list). This
means that mailing lists provide a form of one-to-many communication.

• When you send an email, you donotwait for the email to be received by

207

208 CHAPTER 22. PUBLISH AND SUBSCRIBE SERVICES

all the people subscribed to the mailing list. Instead, the email infrastruc-
ture delivers the messages in the background (and this background deliv-
ery might take hours or even days if there are network problems). This
means that sending an email message to the mailing list isasynchronous
communication.

• When you send an email, you donot wait for a reply. This means that
email isone-waycommunication. Of course, a person who receives an
email from you might send you another email in response. This shows
that it is possible toemulatetwo-way communication with a pair of one-
way messages, but the underlying email system is still intrinsically one-
way.

• There are several different mailing lists at the ACME company. One
person might send messages to both theeng-staff@acme.com and
sales-staff@acme.com mailing lists. Some ACME employees
might be subscribed to just one mailing list, while other employees might
be subscribed to more than one mailing list. In an analogous way, a pub-
sub system might have several different “topics” that an application can
send messages to, or to which an application can subscribe.

• When you send an email to a mailing list, your message initially goes
to the mailing list computer, and this computer then forwards on the
messageN times—once for each subscriber to the mailing list. Some
pub-sub systems work in a similar way but some other pub-sub systems
use a multicasting or broadcasting protocol so that a message is transmit-
ted just once (rather thanN + 1 times) and is received simultaneously
by all the subscribers.

22.1.1 Emulating Different Communication Models

Some middleware systems, such as TIBCO Rendezvous, are based on pub-sub
communication. Some other middleware systems, such as IBM MQ Series,
are based on asynchronous, point-to-point communication. Some other mid-
dleware systems, such as CORBA, are based on synchronous, point-to-point
communication.

Each of these three kinds of middleware can emulate the other two kinds.
For example, CORBA can provide one-to-one, asynchronous communication
with IDL oneway calls or CORBA Messaging (Chapter16). And CORBA can
provide pub-sub communication with the various CORBA Services discussed
in this chapter.

22.2. EVENT SERVICE 209

22.1.2 CORBA Services for Publish and Subscribe

The CORBAEvent Service(Section22.2) provides a very basic form of pub-
sub communication. TheNotification Service(Section22.3) extends the Event
Service in ways that provide a much richer form of pub-sub communication.
Finally, theTelecom Log Service(Section22.4) extends the Notification Ser-
vice with the ability to permanently log messages so that they can be replayed.

CORBA uses terminology that is different to what has been used in the
discussion so far. Instead ofpublisherandsubscriber, CORBA uses the terms
supplierandconsumer. Instead oftopic or mailing list, CORBA uses the term
event channel.

22.2 Event Service

The CORBA Event Service offers both a “push” and a “pull” model of commu-
nication. The push model is similar to how I have described pub-sub systems,
so I discuss the push model first, in Section22.2.1and then discuss the pull
model in Section22.2.2.

22.2.1 The Push Model

Figure22.1shows the IDL definitions relevant to the push model of the Event
Service. For conciseness, theraises clauses on operations have been omit-
ted. Figure22.2 shows graphically how the various interfaces interact with
each other.

A consumer application must implement thePushConsumer interface.
This has apush() operation that is invoked to pass it anany (Section15.3on
page140) containing arbitrary data related to an event. ThePushConsumer
interface also has an operation calleddisconnect push consumer() ,
which is invoked if the Event Service wants to disconnect itself from the con-
sumer, for example, when anEventChannel is beingdestroy() ed.

A supplier application must implement thePushSupplier interface.
This is, in effect, acallbackinterface (Section1.4.2.2on page10). The Event
Service invokes thedisconnect push supplier() operation if it wants
to disconnect itself from the supplier, for example, when anEventChannel
is beingdestroy() ed.

An EventChannel is the initial point of contact for the Event Service.
This interface just splits its functionality among theSupplierAdmin and
ConsumerAdmin objects, and so provides operations that allow applications
to access these objects.

210 CHAPTER 22. PUBLISH AND SUBSCRIBE SERVICES

module CosEventComm {
interface PushConsumer {

void push (in any data);
void disconnect push consumer ();

};
interface PushSupplier {

void disconnect push supplier ();
};

};
module CosEventChannelAdmin {

interface ProxyPushConsumer
: CosEventComm::PushConsumer

{
void connect push supplier (

in CosEventComm::PushSupplier push_supplier);
};
interface ProxyPushSupplier

: CosEventComm::PushSupplier
{

void connect push consumer (
in CosEventComm::PushConsumer push_consumer);

};
interface ConsumerAdmin {

ProxyPushSupplier obtain push supplier ();
ProxyPullSupplier obtain pull supplier ();

};
interface SupplierAdmin {

ProxyPushConsumer obtain push consumer ();
ProxyPullConsumer obtain pull consumer ();

};
interface EventChannel {

ConsumerAdmin for consumers ();
SupplierAdmin for suppliers ();
void destroy ();

};
};

Figure 22.1:IDL for the Event Service push model

22.2. EVENT SERVICE 211

PPCPPC

SA

EC

PPS

CA

PPS... ...

Event ServiceSupplier

PS

Supplier

PS

Consumer

PC

Consumer

PC

EC = EventChannel
SA = Supplier Admin
CA = ConsumerAdmin

PC = PushConsumer
PPC = ProxyPushConsumer
PS = PushSupplier
PPS = ProxyPushSupplier

..
.

..
.

push()

push() push
()

push()

Figure 22.2:The Push Model of the Event Service

SupplierAdmin is a factory interface (Section1.4.2.1on page9). Its
obtain push supplier() operation creates aProxyPushConsumer .
The use of “Proxy” in this name has nothing to do with code that is gen-
erated by an IDL compiler (Section1.4.5 on page13). Rather, aProxy-
PushConsumer is a delegation object within the Event Service: a supplier
invokespush() on aProxyPushConsumer object and it, in turn, invokes
(or arranges for something else within the Event Service to invoke)push()
on eachPushConsumer object in consumer applications.

The initialization of a supplier application involves the following steps. It
first connects to theEventChannel . It invokesfor suppliers() to ac-
cess theSupplierAdmin and then callsobtain push consumer() to
create aProxyPushConsumer object. Finally, the supplier callsconnect
push supplier() to register its ownPushSupplier object. At this
point, the supplier is fully connected to the Event Service and can callpush()
on theProxyPushConsumer .

The initialization of a consumer application mirrors that of a supplier. It
first connects to theEventChannel . Then it invokesfor consumers()
to access theConsumerAdmin and then callsobtain push supplier()
to create aProxyPushSupplier object. Finally, the consumer application
calls connect push consumer() to register its ownPushConsumer
object. At this point, the consumer is fully connected to the Event Service
and so itspush() operation will be invoked whenever an event occurs.

212 CHAPTER 22. PUBLISH AND SUBSCRIBE SERVICES

22.2.2 The Pull Model

The push model is so called because itpushesdata towards (proxy) consumers.
Conversely, the pull model is so called because itpulls data from (proxy) sup-
pliers. The additional IDL interfaces required for this are shown in Figure22.3.

module CosEventComm {
...
interface PullSupplier {

any pull ();
any try pull (out boolean has_event);
void disconnect pull supplier ();

};
interface PullConsumer {

void disconnect pull consumer ();
};

};
module CosEventChannelAdmin {

...
interface ProxyPullConsumer

: CosEventComm::PullConsumer
{

void connect pull supplier (
in CosEventComm::PullSupplier pull_supplier);

};
interface ProxyPullSupplier

: CosEventComm::PullSupplier
{

void connect pull consumer (
in CosEventComm::PullConsumer pull_consumer);

};
};

Figure 22.3:IDL for the Event Service pull model

The pull() operation defined onPullSupplier is a blocking oper-
ation. Thetry pull() operation is a non-blocking version. It returns im-
mediately, and thehas event out parameter indicates whether the returned
any has event data in it or is empty.

The Event Service specification defines additional interfaces that make it
possible to transmit data using strongly-typed APIs rather than having to pack-
age up the data inside anany . However, the Typed Event Service was difficult

22.2. EVENT SERVICE 213

for vendors to implement (due to some immaturity in CORBA at the time) and
so there were very few implementations of it. For that reason, I do not discuss
the Typed Event Service in this book.

The 80/20 principle [Koc00] applies to software products: “80% of people
use just 20% of a product’s capabilities”. Of course, the percentages are not
always 80 and 20, but the principle that most people use just a small subset of a
product’s capabilities is true. This principle applies to the Event Service. Most
people use just the push model of event communication; very few people use
the pull model or the typed push/pull models.

22.2.3 Limitations of the Event Service

The Event Service suffers from several limitations, as I discuss in this section.
One limitation is that the Event Service does not define afactory interface

(Section1.4.2.1on page9) for creating event channels. This means that an
Event Service implementation might have just one event channel. Conceptu-
ally, this is similar to a company deciding that it will have just one internal
mailing list. The result is that subscribers receiveall messages, even those
in which they have no interest. Many implementations of the Event Service
overcome this limitation by providing their own proprietary factory interface.
However, use of such proprietary APIs obviously hinders source-code porta-
bility.

Another limitation is that the Event Service specification does not define
what quality of service should be provided by an implementation. For example:

• Should an Event Service implementation keep track of connected sup-
pliers and consumers only in memory, in which case details of the con-
nections will be lost if the Event Service is killed and restarted, or should
this information be maintained in a persistent store so that connections
can be maintained even if the Event Service is killed and restarted?

• Should an Event Service implementation store yet-to-be-delivered mes-
sages only in memory, in which case the messages will be lost if the
Event Service is killed and restarted, or should these messages be per-
sisted in a file or a database so that they willnot be lost if the Event
Service is killed and restarted?

• If the Event Service has difficulty in delivering a message to a consumer
then should the Event Service give up after the first delivery attempt? Or
should the Event Service re-attempt the delivery a number of times? If
the Event Service should re-attempt delivery a number of times then how

214 CHAPTER 22. PUBLISH AND SUBSCRIBE SERVICES

long should it wait between retries? And should it finally give up after
N attempts or after a particular amount of time?

The Event Service specification deliberately refrained from defining what qual-
ity of service should be offered. This was done with the hope of encouraging
different vendors to compete by offering different qualities of service. How-
ever, this strategy backfired for two reasons.

First, most implementations of the Event service held all messages and in-
formation about connected suppliers/consumers in in-memory data-structures
rather than in a file or a database. This meant that there was not much compe-
tition based on different qualities of service.

Second, an application might want more than one quality of service at the
same time. For example, assuming that a vendor provided anEventChannel
factoryas a proprietary enhancement, a supplier application might want to send
some messages on oneEventChannel with a particular quality of service
and some more messages on a differentEventChannel that had another
quality of service. However, most vendors offered only asingle quality of
service that applied toall theEventChannel objects.

The above limitations means that, unfortunately, the Event Service is un-
suitable for the needs of most applications.

22.3 Notification Service

The Notification Service is sometimes referred to as “the Event Service on
steroids”, “the Event Service++” or simply “what the Event Service should
have been in the first place”. As I discuss in the following subsections, the
Notification Service removes all the limitations of the Event Service that were
discussed in Section22.2.3, and adds additional functionality. The result is a
publish-subscribe system that is very flexible, and scalable.

22.3.1 IDL Interfaces

The Notification Service is backwards compatible with the Event Service. This
backwards compatibility is achieved by having the IDL interfaces of the No-
tification Service inherit from those of the Event Service. Furthermore, the
naming conventions of the IDL interfaces for the Notification Service closely
mirror those of the Event Service. This backwards compatibility and similar
naming conventions provide two important benefits:

• The backwards compatibility makes it possible for developers who have
already written Event Service-based applications to reuse those applica-

22.3. NOTIFICATION SERVICE 215

tions “as is” with the Notification Service and to then slowly migrate the
applications so that they make use of the extra capabilities of the Notifi-
cation Service.

• The backwards compatibility, combined with the similar naming con-
ventions makes it possible for developers to use the Event Service as a
stepping stone to learning the richer APIs provided by the Notification
Service.

The Notification Service defines 38 IDL interfaces. This is in addition to the
11 IDL interfaces defined in the Event Service, from which interfaces in the
Notification Service inherit. That is 49 interfaces in total! This is an amazingly
high number of interfaces but, thankfully, most developers use just a small
fraction of these interfaces. Many of the interfaces provide administration-
type functionality and most vendors provide either command-line utilities or a
graphical program that interacts with these administration-type interfaces, so
that developers do not need to write any code to do so.

22.3.2 StructuredEvent

The Notification Service allows event data to be transmitted as anany . This
is for backwards compatibility with the Event Service. However, the Notifi-
cation Service allows event data to be transmitted in a different format, called
a StructuredEvent , which is shown in Figure22.4. Actually, this figure
shows a slightly simplified IDL. In particular, sometypedef declarations
have been removed in order to make it more concise. For example, the type
of thevariable header field in EventHeader is really atypedef of
a typedef of thesequence shown.

TheEventType embedded in the header of aStructuredEvent con-
tains twostring fields. Thedomain name should be set to identify a par-
ticular vertical industry, for example,"Telecomms" , while thetype name
should be set to uniquely identify a type of event within that domain, for exam-
ple, CommunicationsAlarm . The rest of anEventHeader consists of
a sequence of Property s, which are name-value pairs. Programmers can
place whatever name-value pairs they want in this sequence, but it is intended
to be used to express a desiredquality of service(QoS) for controlling message
delivery, for example, a message priority or a delivery timeout. The Notifica-
tion Servicecould haveused strongly typed fields inEventHeader to specify
the QoS. However, there are two benefits to specifying them as weakly-typed
name-value pairs. One benefit is that it reduces the size of the event header
if, as is often the case, a supplier is happy with default QoS values. Another

216 CHAPTER 22. PUBLISH AND SUBSCRIBE SERVICES

module CosNotification {
struct Property {

string name;
any value;

};
struct EventType {

string domain_name;
string type_name;

};
struct FixedEventHeader {

EventType event_type;
string event_name;

};
struct EventHeader {

FixedEventHeader fixed_header;
sequence<Property> variable_header;

};
struct StructuredEvent {

EventHeader header;
sequence<Property> filterable_data;
any remainder_of_body;

};
typedef sequence<StructuredEvent> EventBatch ;
...

};

Figure 22.4:Pseudo IDL for the Notification Service event data

benefit is that it allows future revisions of the Notification Service to define
additional QoS name-value pairs in a backwards-compatible manner; likewise,
it allows vendors to define additional, proprietary QoS() name-value pairs.

After the header, thefilterable data part of aStructuredEvent
provides anothersequence of name-value pairs. It is in thissequence
that users are expected to place (most/all of) their event data. Representing the
event data as name-value pairs is a trade-off between the awkwardness of a sin-
gle unnamedany (as was provided by the Event Service) and a non-extensible
but compile-time-safestruct with fixed fields. The intention of the OMG
is that different vertical domains will define which name-value pairs should
be specified for particular kinds of events. For example, representatives from
different telecommunications companies might get together to define the name-
value pairs for different kinds of events, such asCommunicationsAlarm ,

22.3. NOTIFICATION SERVICE 217

relevant to that industry.1 These name-value pairs are calledfilterable
data because they can be accessed byfilters (Section22.3.4).

The final field in aStructuredEvent is anany . This field allows you
to store any data that is unlikely to be of use to filters, possibly because the data
is a large “blob” of data, such as the contents of a file.

22.3.3 EventBatch

The Notification Service can send and receive anEventBatch (Figure22.4),
which is a sequence ofStructurdEvent . This enables applications with
high throughput requirements to send or receive events in bulk. As an example
of this, let us suppose a producer application produces 1000 events per second.
Instead of the producer pushing 1000 events individually every second, this
application could populate a sequence of 1000 structured events and push that
sequence once per second.

A consumer can receive events in anEventBatch instead of receiving
individual events. As I will discuss in Section22.3.7, applications can specify
various quality-of-services for their interactions with the Notification Service.
A consumer application can use this to specify its desired batch size andpacing
interval. The pacing interval is the maximum delay between delivery of events.
For example, let us suppose a consumer sets the batch size to 1000 events
and the pacing interval to 10 seconds. After 10 seconds, even if the channel
has received only 300 events, it will send that batch to the consumer, rather
than waiting until it has received all 1000 events before sending them to the
consumer.

A discussion of how an application specifies if it wants to supply/consume
events in the form of individualany s, individualStructuredEvent s or as
anEventBatch is deferred until Section22.3.5.

22.3.4 Filters

A filter is an object wrapper around a collection ofconstraints(conditions).
Filters can be applied to messages as they pass through the Notification Service.

1 Broadly speaking, this passing of data through weakly-typed, name-value pairs is similar in
concept to the exchange of documents in XML format. Theoretically, an XML documentcould
contain arbitraryelements(which are conceptually similar to name-value pairs). However, XML
schemas can be defined that specifywhichelements should be present in an XML document. In
both XML document exchange and transmission of messages through the Notification Service, it
is people adhering to documented conventions that increases the likelihood of a particular docu-
ment/message containing all the elements/name-value pairs that it is supposed to contain.

218 CHAPTER 22. PUBLISH AND SUBSCRIBE SERVICES

Syntactically, there are two different kinds of filter:Filter andMapping-
Filter . A FilterFactory is used to create both kinds of filter.

module CosNotifyFilter {
interface FilterFactory {

Filter create filter (...) raises(...);
MappingFilter create mapping filter (...)

raises(...);
};

};

22.3.4.1 Filters to Remove Messages

The purpose of theFilter type is to delete messages before they are trans-
mitted to consumers. Doing this saves consumer applications from having to
examine messages to see if they are relevant. It also saves on network traffic
because deleted messages are not transmitted.

The constraints within aFilter are expressed inExtended Trader Con-
straint Language(ETCL), which, as its name suggests, is an enhancement of
the Trader Constraint Language(TCL) that is used with the Trading Service
(Chapter20). A constraint is a boolean expression that is written in terms of
the name-value pairs within aStructuredEvent (Section22.3.2). A con-
straint can also refer to the event’sdomain name andtype name.

As previously mentioned, aFilter is a wrapper around acollection(rep-
resented as asequence) of constraints. Ifanyconstraint within aFilter
evaluates totrue then the message is allowed to pass through. In other words,
a message is discarded only if ifall the constraints evaluate tofalse.

Filters can be attached to all combinations of proxy push/pull/consumer/
supplier objects. However, it is more common to attach filters to theconsumer
proxies rather than thesupplierproxies because it it more natural to want to
filter what consumers receive rather than to filter what suppliers send.

Filters can also be attached toSupplierAdmin andConsumerAdmin
objects. The benefits of doing this are discussed in Section22.3.5.

You can attachmultiplefilters to a proxy or admin object. If this you do this
then a message is discarded only ifall the constraints inall the filters evaluate
to false.

22.3.4.2 Filters for Message Timeouts and Priorities

The header of aStructuredEvent can contain name-value pairs that spec-
ify a priority and/or deadline for message delivery. These entries, if present,

22.3. NOTIFICATION SERVICE 219

are specified by the supplier of the event. TheMappingFilter type al-
lows consumers—actually theConsumerAdmin and supplier proxies that
act on behalf of consumers—to override the priority and/or deadline asso-
ciated with a message. The nameMappingFilter is not very intuitive;
OverrideFilter might have been more intuitive.

A consumer admin or supplier proxy can have twoMappingFilter
objects associated with it. One of these is used to override a message’s pri-
ority and the other is used to override a message’s delivery deadline. Sec-
tion 22.3.4.1mentioned that aFilter is an object wrapper around a col-
lection of constraints. In contrast, aMappingFilter is an object wrapper
around a collection ofconstraint-valuepairs. If aconstraintevaluates totrue
then its associatedvalue is used to override the message’s priority or deliv-
ery deadline. Because different IDL types are used to express priorities and
delivery deadlines, thevalueis wrapped inside anany .

22.3.5 ConsumerAdmin and SupplierAdmin

Figure22.5shows the create-style operations on theSupplierAdmin and
ConsumerAdmin interfaces. Each of these operations takes aClientType
parameter that indicates if the supplier/consumer will handle event data as an
any , StructuredEvent or a EventBatch . The create-style operation
then creates a type-specific proxy object for the desired type. Each of these
proxy types is a sub-type ofProxySupplier or ProxyConsumer .

The SupplierAdmin and ConsumerAdmin interfaces both inherit
from FilterAdmin , which provides operations for associatingFilter ob-
jects with the admin object. In addition to this, theConsumerAdmin has two
MappingFilter attributes, for overriding the priority and delivery deadline
of messages. The ability to associate filters with aConsumerAdmin makes
it possible to do filtering for agroupof consumers rather than individually for
each consumer. Not only is this more convenient from a maintenance point
of view, it is also an important optimization because a filter is evaluatedonce
for the entire group of consumers rather than being evaluatedrepeatedly, once
per consumer. Providing filters in aSupplierAdmin is of less utility (sim-
ply because filtering is typically a consumer-side issue) but the capability is
provided for the sake of symmetry.

22.3.6 EventChannel

One of the limitations of the Event Service was that it defined just a single
event channel; it didnot define afactory(Section1.4.2.1on page9) that could

220 CHAPTER 22. PUBLISH AND SUBSCRIBE SERVICES

module CosNotifyChannelAdmin {
...
enum ClientType {ANY_EVENT, STRUCTURED_EVENT,

SEQUENCE_EVENT};
interface ConsumerAdmin

: CosNotifyFilter::FilterAdmin,
// rest of inheritance clause omitted

{
attribute CosNotifyFilter::MappingFilter

priority filter ;
attribute CosNotifyFilter::MappingFilter

lifetime filter ;
ProxySupplier obtain notification pull supplier (

in ClientType ctype, ...) raises (...);
ProxySupplier obtain notification push supplier (

in ClientType ctype, ...) raises (...);
...

};
interface SupplierAdmin

: CosNotifyFilter::FilterAdmin,
// rest of inheritance clause omitted

{
ProxyConsumer obtain notification pull consumer (

in ClientType ctype, ...) raises (...);
ProxyConsumer obtain notification push consumer (

in ClientType ctype, ...) raises (...);
...

};
};

Figure 22.5:IDL for Notification Service Admin objects

be used to create additional event channels. The Notification Service removes
this limitation. Figure22.6 shows the IDL definitions forEventChannel
andEventChannelFactory .

The create channel() operation defined on the factory interface is
used to create a newEventChannel . The parameters passed to this opera-
tion (which have been omitted from the IDL shown in Figure22.6) are used
to specify the QoS of the newly created channel. An overview of the available
QoS is provided in Section22.3.7.

EachEventChannel provides a set of pre-createdConsumerAdmin ,

22.3. NOTIFICATION SERVICE 221

module CosNotifyChannelAdmin {
...
interface EventChannel

: // inheritance clause omitted
{

readonly attribute ConsumerAdmin
default consumer admin ;

readonly attribute SupplierAdmin
default supplier admin ;

readonly attribute CosNotifyFilter::FilterFactory
default filter factory ;

ConsumerAdmin new for consumers (...);
SupplierAdmin new for suppliers (...);
...

};
interface EventChannelFactory
{

EventChannel create channel (...) raises(...);
...

};
};

Figure 22.6:IDL for Notification Service event channel and factory

SupplierAdmin and FilterFactory objects. These objects are ac-
cessible through thedefault_<...> attributes. However, thenew for
consumers() and new for suppliers() operations allow additional
admin objects to be created. By creating different admin objects for different
groups of suppliers/consumers, it is possible for the Notification Service to of-
fer a different QoS (Section22.3.7) for different groups of suppliers/consumers.
Also, this arrangement makes it possible for, say, aConsumerAdmin object
to filter messages on behalf of a group of consumers. Such group-level filtering
is much more efficient (and hence more scalable) than repeated filtering at the
granularity of individual proxies.

22.3.7 Quality of Service (QoS)

The Notification Service allows users to choose a quality of service for the
transmission of events. The following list briefly explains some of the more
important quality of services available with the Notification Service:

222 CHAPTER 22. PUBLISH AND SUBSCRIBE SERVICES

• Within the Notification Service, you can create many channels, where
each channel can be used to transmit different types of event. This is
conceptually similar to setting up multiple mailing lists within an orga-
nization, to facilitate discussion of different topics. A channel can be
eitherpersistentor best effort(which is the Notification Service termi-
nology for non-persistent). If a channel is persistent then this means
that the channel infrastructure and all its yet-to-be-delivered events are
recorded in a file or database so they survive even if the Notification
Service process dies and is restarted. In contrast, the infrastructure of a
best-effort channel and its yet-to-be-delivered events are held only in the
memory of a Notification Service, and so a best-effort channel and its
events are implicitly destroyed when the Notification Service process is
killed and restarted.

• A best-effort channel can be used to transmit only best-effort events. In
contrast, a persistent channel can be configured to transmit either per-
sistent or best-effort events. If best-effort events are transmitted on a
persistent channel and the Notification Service dies then all the yet-to-
be-delivered events are discarded.

• When the Notification Service receives an event from a supplier applica-
tion, the Notification Service may not be able to deliver the event to all
the consumers immediately. For example, if a consumer application is
not currently running then the Notification Service will periodically try
to re-send the event to the consumer. There are several quality-of-service
values that can be used to control how hard the Notification Service tries
to deliver an event to a consumer before it gives up and discards the
event:

– Yet-to-be-deliveredevents for a consumer can be delivered in: FIFO
(first-in, first-out) order, priority order (based on an optional prior-
ity value in the header of events), deadline order (based on an op-
tional delivery-deadline value in the header of events) or any order
(which allows the Notification Service to deliver events in whatever
order it wants).

– A limit can be placed on the number ofyet-to-be-deliveredevents
that can be queued up for a consumer.

– If the Notification Service is about to exceed the maximum limit of
yet-to-be-delivered events for a consumer then it discards an event.
The discard policy can have any of the values used for the delivery

22.4. TELECOM LOG SERVICE 223

policy, that is, FIFO order, priority order, deadline order or any
order.

– If an attempt to deliver an event fails then how long the Notification
Service waits before trying to resend an event.

– The maximum number of retries before the Notification Service
gives up and discards the event.

– A timeout value for invoking an operation on the consumer to de-
liver the event.

• It is possible to set maximum limits on the number of suppliers and con-
sumers that can be connected to the Notification Service.

Quality of service for a channel is indicated through name-value pairs.
QoS can be specified when creating anEventChannel (Figure22.6). This
default QoS can then be overridden at the level of aConsumerAdmin or
SupplierAdmin object and/or at the level of individual proxy objects.

22.4 Telecom Log Service

In the Notification Service (Section22.3), anEventChannel created with
thepersistentQoS stores each event in a persistent store (for example, a file or
database) until it has delivered the event to all consumers. At that point, the
EventChannel deletes the event from the persistent store. Some organiza-
tions prefer to keep a permanent record of events. They can do this with the
Telecom Log Service, so called because it was defined by companies in the
telecommunications industry, but its functionality is useful to organizations in
other industries too.

The most important interfaces in the Telecom Log Service areNotify-
LogFactory , which is a factory (Section1.4.2.1on page9) that creates
NotifyLog objects, which inherit from theEventChannel interface of
the Notification Service.

When aNotifyLog object (actually, one of its consumer proxy objects)
receives an event from a supplier, it passes the event on to consumers, if any,
and it also stores the event in a persistent store. TheNotifyLog keeps events
in its persistent store, even after it has delivered the events to all subscribed
consumers.

Because the Telecom Log Service leverages the infrastructure of the Noti-
fication Service, aNotifyLog can haveFilter objects (Section22.3.4.1)
associated with it. This means that a log object can be selective aboutwhich
events it records.

224 CHAPTER 22. PUBLISH AND SUBSCRIBE SERVICES

TheNotifyLog interface has operations that allow you to iterate over the
events in its persistent store. You canquery() events that match a particu-
lar constraint. You can alsoretrieve() the events that occurred since a
specified time.

The Telecom Log Service gives you a lot of control over the persistent store
of aNotifyLog object. For example:

• You can specify how much space aNotifyLog object should allocate
in its persistent store for events.

• You can specify how aNotifyLog should behave when its persistent
store fills up. The two options available are to use awrap policy so that
theNotifyLog overwrites the oldest events, or use ahalt policy so that
theNotifyLog stops recording new events.

• You can instruct the Telecom Log Service to generate an event when
a NotifyLog reaches a specified percentage of capacity. This allows
users to take appropriate action when a log is about to fill up, for exam-
ple, create a new log that will be used in place of the existing log.

• You can delete individual events or events that match a specified con-
straint from a log.

• You can specify that events in the log should be deleted automatically
after a specified number of seconds.

• You can instruct aNotifyLog to save only those events that are re-
ceived during specified times/days.

Chapter 23

Security

The CORBA Security Service (CORBASEC) is defined in a way that is inde-
pendent of any particular security technology. Instead, the specification can
be applied to numerous security protocols, and the CORBASEC APIs shield
application developers from differences across security technologies as much
as possible. This abstraction from specific security technologies gives CORBA
developers the freedom to change the underlying security technologies used
in a given system without needing to redesign the applications that use COR-
BASEC.

23.1 Features of CORBASEC

This section discusses the most important security features that CORBASEC
addresses. Constructing secure CORBA systems involves using code or config-
uration to specify the desired combinations of these features at an appropriate
level of detail for your system. These security features are common to many
different security protocols or mechanisms.

Authentication. This is the requirement thatentities(for example, people or
programs) prove their identity. In CORBASEC terminology, an entity
with the ability to use the resources of a system is called aprincipal. Au-
thenticationis the process of verifying an entity’s claimed identity. Note
that clients can authenticate servers, and vice versa. Authentication can
be either mandatory or optional depending on the security requirements
of a given system. Successful authentication results in the principal be-
ing granted a set ofprivilege attributes(such as roles, groups, security

225

226 CHAPTER 23. SECURITY

clearance levels and so on); these are stored in acredentialsobject and
are later considered duringauthorization. Some examples of different
authentication mechanisms that are commonly used are X.509 certifi-
cates, usernames and paswords, and smart cards or hardware tokens. An
application has separate credentials for each authentication mechanism
with which it wishes to authenticate itself.

Authorization. This is the process of verifying whether or not a principal is
allowed to perform a requested action in a system. An example of a com-
monly used authorization paradigm is Access Control Lists (ACLs). Al-
though the flexibility of ACLs differ among CORBA Security products,
ACLs typically allow access to be constrained at varying levels of gran-
ularity, such as per-process, per-object, per-interface or per-operation.
Some products may also provide ACL functionality that allows access
decisions to be made based on the values of parameters passed to IDL
operations. Note that during authorization the set ofprivilege attributes
that was determined for the principal during the authentication process
is used to control access to system resources.

Data integrity. This uses techniques such as message digests (a form of cryp-
tographic checksum) to provide protection against malicious modifica-
tion of messages.

Confidentiality. This ensures the privacy of message exchanges so that only
the intended recipients can read them.

Detection of replayed messages.This prevents active attackers from replay-
ing previously stored communications.

Detection of misordering. This prevents an attacker from rearranging mes-
sages in a different order to that in which they were sent.

Auditing/logging. This involves keeping secure records of “who did what” so
that access to system resources can be examined at a later time. Some
security systems allow registration with a real-time management service
that can perform appropriate system-defined alerts.

Delegation. This is when one user or principal authorizes another to use their
identity or privileges, potentially with usage restrictions. Delegation in-
volves controlling and recording the principal identities that are involved
in executing a CORBA request across a chain of participating servers.
Delegation can be transparent to the authorization process and be based
on the current effective principal. Alternatively, some security products

23.2. CORBASEC CONFORMANCE LEVELS 227

additionally allow authorization decisions to be based on delegation con-
straints associated with a request.

CORBASEC details a very rich model for delegation that includes sup-
port for a number of delegation modes of increasing complexity. This is
discussed further in Section23.2.2.

Non-repudiation. The verbrepudiatemeans to deny, disown or reject as un-
true. Non-repudiationmeans the ability to prove whether or not a prin-
cipal invoked a particular operation, so that the principal cannot later
deny invoking an operation that he or she did, in fact, invoke. This is
an advanced feature and, in practice, depends on the existence of an ap-
propriate supporting infrastructure to be able to persistently store and
subsequently recover the relevant evidence for disputed actions. Non-
repudiation support is anoptionalconformance point of the CORBASEC
specification and is not supported by most current CORBASEC imple-
mentations.

23.2 CORBASEC Conformance Levels

The capabilities of CORBASEC are divided into a number of distinct confor-
mance packages that are described in the following subsections.

CORBASEC Level 1 and Level 2 are two packages that define the most
important core functionality, over which the other functional packages listed
are layered to provide additional security features appropriate to specific de-
ployment environments.

23.2.1 CORBASEC Level 1

CORBASEC Level 1 specifies how secure associations are established between
client and server applications to provide authentication, confidentiality, re-
play and misordering detection, ORB-mediated authorization decision support
and auditing. Importantly, CORBASEC Level 1 defines support forsecurity-
unaware applications, which involves being able toconfigureapplications to
communicate securely,withoutthe need to write security-specific code. This is
a very useful feature that removes a whole category of potential security cod-
ing errors for simple applications. CORBASEC Level 1 security also supports
simple delegation. This allows the identification and subsequent authorization
of an originating client when a request is sent from that client to a server and
this server then acts on behalf of the originating client when making related
requests to other servers. ORB-enforced access control checks must also be

228 CHAPTER 23. SECURITY

supported at this level, the specification gives implementors freedom as to how
access decisions are performed.

While a large number of applications can be usefully configured to be se-
cure using only CORBASEC Level 1 functionality, more complex applications
may require the use of the CORBASEC Level 2 features outlined below.

23.2.2 CORBASEC Level 2

CORBASEC Level 2 is a superset of CORBASEC Level 1 functionality, all
functionality specified for CORBASEC Level 1 applications is also available
to CORBASEC Level 2 applications.

23.2.2.1 Security Aware APIs

CORBASEC Level 2 specifies comprehensive API support forsecurity-aware
applications. These APIs make it possible for both server and client applica-
tions to have finer control over security policies than can be obtained by con-
figuration alone. These APIs allow control over most aspects of CORBASEC
security such as how to combine secure and insecure communications, create
and use multiple security credentials, and query the details of peer credentials.
Normally CORBASEC APIs are used only when the desired functionality is
not possible through the use ofsecurity-unawareapplications. An example
of where the use of CORBASEC APIs might be necessary for an application
would be when some dynamic computation needs to be executed to determine
whether a request should be allowed or denied.

23.2.2.2 Delegation

CORBASEC Level 2 also supports a variety of delegation modes that are im-
portant if you need more control over the chain of principals involved in a
CORBA request that involves one or more intermediate CORBA servers:

No delegation. The client permits the intermediate server object to use its
privileges for access control decisions, but doesnot permit them to be
delegated. Because of this, the intermediate server object cannot use the
client’s privileges when invoking upon other objects.

Simple delegation.The client permits the intermediate object to assume its
privileges, both using them for access control decisions and delegating
them to others. The target object receives only the client’s privileges,
and does not know who the intermediate is.

23.2. CORBASEC CONFORMANCE LEVELS 229

Composite delegation.The client permits the intermediate object to use its
credentials and delegate them. The client’s privilegesand the intermedi-
ate object’s privileges are passed to the target, so that both sets of privi-
leges can be individually checked.

Combined privileges delegation.The client permits the intermediate object
to use its privileges. The intermediate object converts these privileges
into credentials and combines them with its own credentials. In this
case, the target cannot distinguish which privileges come from which
principal.

Traced delegation. The client permits the intermediate object to use its priv-
ileges and delegate them. However, at each intermediate object in the
chain, the intermediate’s privileges are added, and all the privileges are
propagated to provide a trace of the delegates in the chain.

A client application may not see the difference betweencomposite delegation,
combined privileges delegationandtraced delegation; the client may just see
them all as some form of composite delegation. However, the target object can
obtain the credentials of intermediates and the original client separately if they
have been transmitted separately.

Time periods can be applied to restrict the duration of the delegation. In
some implementations, the number of invocations may also be controllable.

23.2.2.3 Access Control

In general CORBASEC implementations may use any one of a large number
of authorization models. CORBASEC Level 1 does not prescribe a specific
authorization model. In contrast, CORBASEC Level 2 requires support for a
specific authorization model that is calledDomainAccessPolicy. The actualuse
of this model (as opposed to its mere availability) is not mandatory; customers
can (and commonly do) use alternative authorization models.

It can be argued that a specific authorization model should have been an
optional part of the specification. This is because CORBA is an integration
technology and, as such, it most usefully needs to integrate with theexisting
security systems that customers have already deployed. Nonetheless the Do-
mainAccessPolicy authorization model is a powerful one; it enables the specifi-
cation of therequired rightsfor operations that are validated at runtime against
theeffective rightsassociated with the current client’sprivilege attributes.

The Administration of the mapping of rights to operations is also specified
by CORBASEC Level 2. Although these administration interfaces are well de-

230 CHAPTER 23. SECURITY

signed, many customers need their security solutions to integrate with already-
deployed, non-CORBA-specific enterprise security infrastructure. An already-
deployed infrastructure will probably have its own administration command-
line or GUI tools, and the mandated CORBASEC DomainAccessPolicy ad-
ministration policy may not be of any relevance for such deployments.

23.2.3 Non-repudiation Package

This package allows for the generation and checking of evidence so that actions
cannot be repudiated after the event.

23.2.4 Security Replaceability Packages

These packages standardize a way to integrate third-party Security Service im-
plementations with a CORBA product. There are two relevant packages:

ORB Services Replaceability Package.The ORB usesportable interceptors
(Chapter14) to call on object services, such as transactions or security.
An ORB conforming to this specification does not contain any significant
transactions- or security-specific code; instead such code is contained in
portable interceptors, to which the ORB delegates.

Security Service Replaceability Package.Even if the ORB does not imple-
ment the ORB Services Replaceability Package, it still makes all calls
on security services via specified replaceability interfaces.

A CORBA product that supports one or both of these replaceability packages is
said to besecurity ready. A security-ready CORBA product may or may not be
bundled with security functionality. However, it is ready to host CORBASEC
functionality, which may be implemented by a third-party vendor.

23.2.5 Secure Interoperability

23.2.5.1 Common Secure Interoperability (CSI) Feature Packages

The Common Secure Interoperability (CSI) specification ensures secure inter-
operability between different vendors’ security products. There are three CSI
feature packages, each of which provides a different level of secure interoper-
ability:

Level 0. Identity-based policies without delegation.

Level 1. Identity-based policies with unrestricted delegation.

23.2. CORBASEC CONFORMANCE LEVELS 231

Level 2. Identity-based policies with controlled delegation.

Different vendors’ products are interoperable if they support the same level
of common secure interoperability and also share support for the sameCom-
mon Security Protocol(discussed in Section23.2.5.2). In general the CSI spec-
ification describes how interoperability is achieved by embeddingTagged-
Component entries in IORs (Section10.2.3on page108). The actual in-
formation embedded in the IOR is specific to theCommon Security Protocol
Packagesthat are being used. Clients that support CSI validate the CSI infor-
mation contained in an IOR against their specified client side security policies
to check:

• that their local security policies allow them to establish a secure associ-
ation to the specified target for the current operation (shouldI do this?),
and also

• that they have the required mechanism-specific capabilities such as the
specific cryptographic profiles that may be indicated in the IOR (can I
do this?).

CORBA implementations may simultaneously support more than one specific
Common Security Protocol Package—this is useful since it facilitates bridging
between different security technology domains.

23.2.5.2 Common Security Protocol Packages

A specific common security protocol package contains all functionality that is
required for secure vendor-independent interoperability between different orbs
over the specific security mechanism to which the package relates. The list
of currently availableCommon Security Protocol Packagesis described below.
All of the items listed below except for the respective SSL and DCE-CIOP
interoperability definitions depend on the implementation of theSecure Inter-
ORB Protocol(SECIOP).

SSL protocol The popular SSL or TLS family of protocols provide Public Key
based mutual authentication capabilities (using X.509v3 certificates) as
well as confidentiality, integrity, replay and misordering detection ca-
pabilities.1 These protocols inherently support identity-based policies
without delegation over a secure channel to provide CSI Level 0 capa-
bilities. Note that CSIv2 level 1 or 2 capabilities can also be layered

1 The Transport Layer Security (TLS) protocol is the successor to Netscape’s Secure Socket
Layer (SSL) protocol. TLS 1.0 is based on SSL 3.0.

232 CHAPTER 23. SECURITY

over the basic SSL/TLS protocols to provide a richer security solution
and this is covered in Section23.2.5.3. The TLS protocol is defined in
IETF RFC 2246.

GSS Kerberos Protocol This protocol supports identity based policies with
unrestricted delegation (CSI Level 1) using secret key technology for
keys assigned to both principals and trusted authorities. It is also possible
to use it without delegation (providing CSI Level 0). The GSS Kerberos
protocol is based on the IETF GSS Kerberos V5 definition.

SPKM Protocol This protocol supports identity-based policies without dele-
gation (CSI Level 0) using public key technology for keys assigned to
both principals and trusted authorities. The SPKM protocol is based on
IETF RFC 2025, “The Simple Public-Key GSS-API Mechanism”.

CSI-ECMA protocol This protocol supports identity- & privilege-based poli-
cies with controlled delegation (CSI Level 2). It can be used with iden-
tity, but no other privileges and without delegation restrictions if the ad-
ministrator permits this (CSI Level 1) and can be used without delegation
(CSI Level 0). The CSI-ECMA protocol is based on a SESAME profile
of the ECMA GSS-API Mechanism as defined in ECMA 235. There are
three CSI-ECMA variants: CSI-ECMA Public Key, CSI-ECMA Secret
Key, and CSI-ECMA Hybrid.

DCE-CIOP This DCE environment specific protocol achieves secure interop-
erability between ORBs using the DCE-CIOP transport. Is is dependent
on the security services provided by DCE and the DCE Authenticated
RPC runtime that utilizes those services. DCE-CIOP is not based on the
IIOP protocol and is an example of anEnvironment Specific Interoper-
ability Protocol(Section11.1on page111).

23.2.5.3 CSI Version 2 Security Attribute Service (CSIv2 SAS) Protocol

This important protocol is layered over the ORB transport functionality and
provides additional client authentication, delegation, and privilege functional-
ity that may be applied on top of any security mechanism used at the trans-
port layer. The SAS protocol is usually layered over secure transports that are
interoperable as defined by the CSI specification, but it can also be used in
conjunction with insecure transports if required.

The SAS protocol is divided into two layers:

1. TheAuthentication Layeris used to perform client authentication where
sufficient authentication could not be accomplished in the transport. For

23.3. ISSUES NOT COVERED BY CORBASEC 233

example the SSL protocol by itself supports only authentication through
the use of X.509 certificates. However in conjunction with CSIv2, fully
interoperable username-password client authentication and delegation
over SSL is possible between different vendors’ products.

2. The Security Attribute Layer(also referred to as the Common Autho-
rization Layer) may be used by a client to deliver privilege and identity
attributes to a server where they may be used for authorization and dele-
gation related purposes.

If you plan on integrating CORBA and J2EE applications then you should
note that, since version 1.3, the J2EE Application Server specification man-
dates the use of the CSIv2 SAS protocol over SSL for secure interoperability
between CORBA and J2EE applications.

23.3 Issues Not Covered by CORBASEC

The following subsections briefly discuss some issues that are outside the scope
of CORBASEC.

23.3.1 Configuration

CORBASEC defines portable APIs for security, but it doesnot define any de-
tails related to the configuration of a security technology. There are two reasons
for this.

1. All security technologies need configuration of some kind and since
CORBASEC is a technology-neutral specification, it is impractical for
CORBASEC to define any details related to configuration of security
technologies.

2. CORBASEC implementations are available for a wide range of com-
puters, from embedded devices and PDAs, through PCs and UNIX ma-
chines, all the way up to mainframes. However, different computer sys-
tems often have entirely different configuration mechanisms, even for the
same security protocols. There is too much variety in computer systems
for a standardized configuration mechanism to be accepted and used by
developers and administrators.

A practical ramification is that thesource codeof a CORBA application that
uses security can be written in a portable way, but theconfiguration and admin-
istrationof the application will vary from one CORBASEC product to another.

234 CHAPTER 23. SECURITY

CORBASECdoesdefine administration APIs that can be used to administer
some standard CORBASEC security policies. However, for the reasons dis-
cussed above, these APIs are not sufficient, by themselves, to provide complete
portability of security configuration.

23.3.2 Proprietary Enhancements

Some CORBASEC vendors provide proprietary enhancements in the form of
APIs that allow access to security functionality not covered by CORBASEC.
Such proprietary APIs are sometimes provided to give programmers access
to security technology-specific information. For example, a CORBA product
that supports IIOP/TLS might provide proprietary APIs that allow access to
the X.509v3 extensions associated with a peer’s X.509 certificate chain. COR-
BASEC does not define how this is achieved; it just defines how an abstract
AccessID value should be returned to the application, and this is sufficient
for many application types.

23.4 Evaluating CORBASEC Implementations

The CORBA Security Service specification [OMGb, OMGa] covers the secu-
rity requirements of an enormous amount of different types of applications.
Do not jump to the conclusion that only a “fully CORBASEC Level 2 compli-
ant” product will suffice for your requirements—you might be ruling out many
products that may be more suitable for your specific system. In many cases, an
easily-determined subset of CORBASEC functionality is all that is required.
When selecting a CORBASEC product, a good approach is to identify what
security functionality you need in your system now, and what you are likely to
need in the future. Then check this required functionality against that provided
by several vendors and built a small proof-of-concept application to validate
your understanding of what is possible.

During your evaluation of CORBASEC implementations, you may want to
consider the issues discussed in the following subsections.

23.4.1 Adherence to relevant standards

While not mandated by CORBASEC, it is anticipated that CORBASEC imple-
mentations should integrate with existing security technologies that are com-
monly used in industry. It is desirable for a vendor’s security implementation to
adhere to relevant commonly deployed industry standards wherever possible.
Some reasons for this are as follows:

23.4. EVALUATING CORBASEC IMPLEMENTATIONS 235

• You want to be sure that you are using well-understood security protocols
that have undergone appropriate industry analysis and acceptance.

• You want to be sure that a server implemented with one CORBASEC
product can interoperate with a client implemented with a different ven-
dor’s product.

• Sticking to standard security solutions gives you more options if/when
you decide to replace part of your security solution.

23.4.2 Support for Security-unaware Applications

Does a vendor provide sufficiently powerful support forsecurity-unawareap-
plications? Such support is very important because it involves no program-
ming. However, different vendors’ implementations may vary greatly in the
scope of their support for security-unaware applications. When evaluating the
security-unaware support for a product, pay particular attention to the type of
authorization decisions that your applications need to make, and how security
credential initialization details are handled.

23.4.3 Pluggable Security Code

This issue is related to support for security-unaware applications (discussed
in the previous subsection), but is sufficiently important to warrant a separate
discussion. The security requirements of your application may change over
time. It is time-consuming (and therefore expensive) to have to modify an ap-
plication’s source code when its security requirements change. Some CORBA
vendors provide a proprietary mechanism by which you can write aplug-in,
which is code that can be dynamically loaded into an application. A plug-in
is typically packaged as a UNIX shared library (a DLL on Windows) for C++
applications, or as a Java class for Java application. A configuration file is used
to specify which plug-ins should be loaded by an application; once loaded, a
plug-in acts as aninterceptor, though its API might not be that of a portable
interceptor (Chapter14). If a vendor supports plug-ins then you should con-
sider using them, rather than calling CORBASEC Level 2 APIs directly from
application code. Use of plug-ins increases the modularity (and hence main-
tainability) of your applications, simply because it keeps “business logic” code
separate from security code. This modularity also increases the portability of
your application because if you need to use any proprietary security APIs then
their usage can be confined to the plug-in.

236 CHAPTER 23. SECURITY

23.4.4 Portability

Consider the portability of your applications across different vendor products.
Security-unaware applications are the easiest to port since it is just configu-
ration information associated with security policies that needs to change. If
security-related code is required by your application, does the vendor’s prod-
uct support standard CORBASEC API interfaces for the functionality that you
require? Note that if you require access to security mechanism-specific data
then it is likely that you will have to use some vendor-proprietary APIs be-
cause CORBASEC does not define this type of functionality.

23.4.5 Interoperability

Consider your current and potential interoperability requirements carefully.
While every organization’s interoperability requirements may be different, cur-
rently the most commonly available secure interoperability implementations
are those based on CSI interoperability over the SSL/TLS protocols.

I discussed CSIv2 in Section23.2.5.3on page232but there is also a sim-
pler Common Secure Interoperability Version 1 (CSIv1) specification for SSL.
CSIv1 defines how extremely basic IIOP/SSL connectivity for SSL-enabled
ORBs should be achieved. This specification enables IIOP/SSL implemen-
tations from different vendors to interoperate securely at a peer-to-peer level
over the secure transport. No “higher level” semantics such as delegation or
token-based client authentication are defined.

CSIv2 provides a superset of CSIv1 functionality, but note that an ORB
implementationmaysupport both versions simultaneously, which would allow
backward compatibility with older versions.

23.4.6 Administration of Authentication & Authorization In-
formation

How easy and scalable is the administration of the security rights for princi-
ples and separately of the required rights for specific actions? For example,
if a company has hundreds of employees and thousands of customers then it
would be impractical to manage the security rights for each person individu-
ally. Many different authentication and authorization models are possible but,
as an example, an approach that some current security products offer involves
defining several conceptual groupings of principals such asemployee, admin-
istrator, customer, premium customerand so on. Administration is performed
at the granularity of assigning group membership to various principals. At run-

23.4. EVALUATING CORBASEC IMPLEMENTATIONS 237

time, when access to a resource is requested the authorization component of
the security system determines the group membership requirements for access
to the resource and whether the principal satisfies those requirements.

23.4.7 Scalability and Fault Tolerance

Normally the security service is a critical part of the system and you need to
understand if it will introduce a central bottleneck or single point of failure for
your applications. For example, if the security service requires deployment of
processes for authentication and authorization then you should check if these
processes are replicated to provide fail-over or load balancing.

23.4.8 Integration with Enterprise Security Systems

Check if a vendor’s security product provides out-of-the-box integration with
whatever enterprise security system you want to use. If this functionality is
not provided out-of-the-box then you may want to consider checking if the
product provides a framework that allows you to implement such an integration
yourself. It may also be relevant to check if the vendor’s solution can help
integrate multiple different enterprise security solutions at the same time (see
also the related SSO subsection below).

23.4.9 Single-Sign-On Support (SSO)

Single-sign-on allows principals to use their credentials to obtain additional
rights or credentials that can be used for the purposes of authentication and au-
thorization across different security domains. Some of the main characteristics
of SSO solutions are described below:

Unified logon. SSO-enabled clients do not have to logon to each distinct se-
curity domain. As well as being a convenience for clients, this also can
greatly improve the security of sensitive client information. For exam-
ple, a basic CSIv2 username/password deployment would result in the
client providing its password to every server that it contacts. Of course,
the client should be configured to use SSL to perform appropriate au-
thentication of the servers before giving them its password, but an SSO
solution will limit the visibility of the client’s long-lived password to a
single carefully authenticated login server and instead will use a short-
lived SSO token to communicate with application servers. In general it
is good security practice to always limit the visibility of sensitive infor-
mation to the minimum number of system components that need it.

238 CHAPTER 23. SECURITY

Bridging across Security Policy Domains.SSO capabilities can also be used
to provide a bridge across different security policy domains that use the
same underlying security mechanisms. For example, you could have a
trusted federation of security services that serve different security policy
domains; in such a deployment, authentication/issuing decisions would
be referred to the security service that issued the SSO token.

Bridging across Security Technology Domains.SSO capabilities can also be
used to bridge across different security technology domains. For exam-
ple, a client can obtain an SSO token with one particular security mecha-
nism and then use this SSO token in conjunction with a different security
mechanism that is required by the server. The client may not be capable
of performing direct authentication to the server over the second mecha-
nism but the SSO token can provide the additional credential information
required.

23.4.10 Key and Password Management

Consider what facilities the vendor’s product provides for safely handling secu-
rity key/password data for your chosen security mechanisms. The use of non-
standard data formats or mechanisms for credential-related information would
complicate any potential migration to another CORBASEC vendor’s solution.

23.4.11 Client-side Security Policies

Some security solutions focus on server-side security to the exclusion of the
client. Investigate what features are provided by vendor products to ensure that
clients are communicating with the appropriate servers to serve their requests.

23.4.12 Securecorbaloc

As discussed in Chapter12, corbaloc URLs provide a human-readable al-
ternative to stringified IORs (Section3.4.2 on page34). Unfortunately, the
corbaloc specification does not officially support SSL. A common miscon-
ception is that this lack of support is irrelevant since it is possible to use inse-
cure communications in conjunction withcorbaloc to obtain a secure object
reference. However, this is not the same thing as using secure communications
from the start to obtain the secure IOR. Without SSL you are obtaining an
object reference from anunauthenticatedcorbaloc server; in theory what you
obtain could be a different object reference than that which would have been

23.4. EVALUATING CORBASEC IMPLEMENTATIONS 239

returned by anauthenticatedcorbaloc server. In general analyzing the secu-
rity of your system is simpler if you use secure communications everywhere
possible. Some vendors provide a proprietary SSL extension tocorbaloc
functionality to avoid this problem.

23.4.13 Secured CORBA Services

Check whether CORBA services (for example, Naming, Transactions, Notifi-
cation, and various daemon services) that are supplied by the vendor are se-
curity enabled out-of-the-box, or whether they can be configured to be secure
using standard security functionality provided by the product.

23.4.14 Firewall traversal

If using IIOP over the Internet is of relevance to you then you may wish to ask
if your vendor provides any support for secure traversal of firewalls. Unfor-
tunately agreement upon an OMG firewall traversal specification for IIOP has
proven difficult to obtain. This is a complex area but two potential approaches
are briefly mentioned in the following subsections.

23.4.15 Firewall Proxy Servers

Some vendors provide IIOP firewall proxy servers that mediate inbound and
outbound IIOP requests before forwarding them on to their intended recipi-
ent. If a secure firewall traversal solution is important to you then you need to
find out if the IIOP firewall supports a consistent integration with the desired
enterprise security policies. For example, does it guarantee that the secure as-
sociation established between the client and the firewall is compatible with the
security policies of the intended target?

23.4.16 Bi-directional IIOP

The availability of a bi-directional IIOP solution can help simplify secure nav-
igation across firewalls. It is important to note that CORBA callback objects
normally require a separate connection from the server back to the client. This
can complicate the port management aspect for a standard firewall. Addition-
ally it may be desired to only support IIOP connections in one direction and
not allow outbound IIOP connections at all. Bi-directional IIOP facilitates this
by reusing the connection that already exists from the client to the server. If
your vendor supports bi-directional IIOP then you should ask for details of how

240 CHAPTER 23. SECURITY

they ensure compatibility of the server’s “client side” security policies with the
existing connection when it makes callback invocations to the client.

23.5 Final Comments

It is critical to understand that no security product provides total security by
itself. Good security software is a “necessary but not sufficient” condition for a
secure system in the real world. A naive deployment of perfectly good security
products can result in perfectly insecure systems. It is essential that person-
nel with an appropriate background in security understand the core security
mechanisms that are used for a given system and review the overall security
of a planned deployment. Expecting developers that have no background or
appropriate training in security to “add on” security near the end of a project’s
development schedule is a recipe for disaster. A related point to this is that de-
veloping a secure system involves a different mindset to developing an system
without security. For insecure systems, typically everybody is mostly con-
cerned with ensuring that everything that should work does indeed work. For
secure systems you also need to ensure that everything that shouldnot work,
indeed does not work. Sometimes developers working on the core system see
security as an “obstacle that has to be overcome” as opposed to critical func-
tionality in its own right.

23.6 Further Reading

The CORBA Security specifications [OMGb, OMGa] are sources of definitive
(but at times tedious) information. A gentler introduction to CORBA security
can be found inCORBA Security[Bla99]. Some good books that explain se-
curity issues in a non-CORBA-centric way includeCryptography Decrypted
[MBB00], Network Security[KPS02] andApplied Cryptography[Sch95].

Chapter 24

Services not Discussed in this
Book

This chapter briefly summarizes some of the CORBA Services that arenot
discussed in this book. Interested readers can find a discussion of some of
these topics in other books, articles and Internet resources, many of which are
listed in Chapter26.

24.1 Persistent State Service (PSS)

Many real-world applications require the ability to maintain data in a persis-
tent store. Unfortunately, in such applications, the low-level APIs required to
access a persistent storage device, such as a file or a database, are often inter-
mixed with the “business logic” code in the application. Furthermore, the APIs
for accessing different type of persistent store vary enormously. These factors
make it very time-consuming to modify an application that uses one type of
persistent storage to use a different type of persistent storage instead. As an
example of this, let us assume that you are given the task of implementing a
CORBA server that must maintain some data in a persistent store. The devel-
opment and maintenance of this application might proceed as follows:

1. The data-storage requirements of the application are quite modest so you
decide to persist the data in files. The mainline of your server and the
bodies of IDL operations are likely to contain a mixture of “business
logic” code inter-mixed with code for opening, closing, reading and writ-

241

242 CHAPTER 24. SERVICES NOT DISCUSSED IN THIS BOOK

ing files. When you finish implementing the application, you deploy it
and it works well.

2. During the next year, the load gradually increases and eventually it be-
comes apparent that there are some scalability limitations in your file-
based persistence mechanism. You decide to switch over to using an ob-
ject database for persisting data. This change requires that you remove
a lot of the file-access code in the application and replace it with APIs
that are specific to the object database. These modifications take sev-
eral weeks/months of hard work, but once that work is complete, you are
happy that your application can easily scale up to deal with the increased
workload.

3. The next year, your company merges with another company. In the
newly-merged company, a decision is made to streamline the extensive
range of third-party software products being used within the company.
As a result of this, you are told to remove use of the object database from
your CORBA server and to replace it with, say, Oracle. You then spend
several weeks/months to make the necessary modifications.

The intention of the Persistent State Service (PSS) is to eliminate the need for
extensive source-code changes when switching from one persistence mecha-
nism to another. PSS is an abstraction layer that insulates developers from the
technology and APIs of the underlying persistent storage device. PSS deals
only with persistence of data: it doesnot provide transactional or querying
capabilities. Because of this, it is not a silver bullet, but a simple-to-use persis-
tence mechanism is sufficient for the needs of many applications.

PSS provides the Persistent State Definition Language (PSDL), which is a
superset of IDL. PSDL is used to define data-types that can be persisted. A
PSDL compiler then translates the PSDL definitions into corresponding defin-
itions in a programming language (such as C++ or Java). The PSDL compiler
also generates the code required for these programming-language objects to be
persisted in, and retrieved from, a file or database.

The long-term goal is that there will be PSS implementations for a wide
variety of different storage devices, such as files, object databases and rela-
tional databases. An application developer who uses the PSS APIs will be able
to easily switch from using a file-based PSS implementation to a relational
database-based PSS implementation or vice versa. However, this long-term
goal has not been fully met yet. Several CORBA vendors provide implementa-
tions of PSS, but it is common for a vendor to provide a mapping from PSS to
only one type of persistent storage device. You can expect a CORBA vendor

24.2. OTHER CORBA SERVICES AND DOMAIN SPECIFICATIONS243

to be willing to implement PSS support for additional brand names of data-
base or other storage technologiesif there is enough customer interest for such
support. This can easily become a chicken and egg situation: customers are
likely to avoid PSS unless italreadysupports multiple storage technologies,
and vendors will not support multiple storage technologiesuntil they get suf-
ficient PSS customers to make it worthwhile. An important point about this is
that before deciding to use PSS, you should check that your CORBA vendor
(or a third-party vendor) can provide you with PSS implementations for all the
persistent storage technologies that you might require.

There are two final points to note. First, a good, technical overview of
PSS can be found in theJava Programming with CORBAbook [BVD01]. Sec-
ond, PSS-based persistence is one of the infrastructure services that is provided
by the CORBA Component Model (CCM), which is briefly discussed in Sec-
tion 19.3on page182.

24.2 Other CORBA Services and Domain Specifi-
cations

The OMG web site (www.omg.org) provides free-to-download PDF doc-
uments of all the different CORBA-related specifications. It is worthwhile
browsing that web site in order to see the extensive range of services defined
by CORBA. The services areoptionalparts of CORBA, so your CORBA ven-
dor is likely to sell just a subset of them.

It should be noted that the termCORBA Servicesis used to refer to optional
functionality that might be useful to applications inmanydifferent types of or-
ganization. Naming, Events and Transactions are examples of such services.
The OMG recognizes that it is useful to define standards for functionality that
has a more specialized purpose. Such functionality is called anOMG Domain
Specification. The OMG web site lists domain specifications for a diverse range
of specialized areas, such as air traffic control, audio/video streaming, com-
puter aided design, telecommunications, finance, accountancy, manufacturing,
distributed simulations, and life science research. The division between what
is a CORBA Service and what is an OMG Domain Specification is somewhat
subjective, and several specifications are listed in both categories on the OMG
web site.

If your vendor does not implement a particular CORBA Service or OMG
Domain Specification that you require then you might be able to purchase an
implementation of the required functionality from a third-party company. You
can use an Internet search engine (for example,www.google.com) to locate

244 CHAPTER 24. SERVICES NOT DISCUSSED IN THIS BOOK

companies that sell implementations of particular CORBA Services or OMG
Domain Specifications.

Part VI

Final Issues

245

Chapter 25

Portability of CORBA
Applications

Most of the source-code of a CORBA application is portable across different
CORBA products. In fact, portability is so good that it is easier to discuss
the few areas in which portability is lacking. The 80/20 principle [Koc00]
applies to porting: most of the difficultly of porting an application is rooted in
a relatively small number of issues. By being forewarned about these issues, a
development team can pro-actively work to avoid common pitfalls and so make
porting easier and cheaper. This chapter focuses on C++ and Java because
those are the languages that the author has used for CORBA development.

25.1 CORBA Portability Issues

CORBA has standardized the mapping from IDL to many different program-
ming languages, such as C++, Java, Cobol, Ada and so on. This means that
the way a programmer manipulates astruct or union , makes a remote call
using a proxy or implements aninterface with a servant class is exactly
the same across all C++ CORBA products, is exactly the same across all Java
CORBA products, and so on. However, there are still a few CORBA-related
portability issues to watch out for, as the following subsections discuss.

247

248 CHAPTER 25. PORTABILITY OF CORBA APPLICATIONS

25.1.1 Makefile Issues

CORBA has not standardized the name of the IDL compiler or the command-
line options that it takes. Neither has CORBA standardized the names of li-
braries with which CORBA programs must be linked. A practical ramification
is that aMakefile (or equivalent, such as a Microsoft Visual Studio Project
file) will need to be modified if you switch from using one CORBA product to
another. Making such modifications is usually a straightforward, albeit some-
what tedious task.

25.1.2 Names of CORBA-related C++ Header Files

The IDL-to-C++ mapping defines the APIs of generated data-types. Unfor-
tunately, the mapping doesnot standardize the names of the generated source-
codefilesin which the data-types reside. For example, given the filefoo.idl ,
the Orbix/C++ IDL compiler generatesfoo.hh , fooS.hh , fooC.cxx and
fooS.cxx . IDL compilers provided with other CORBA products are likely
to use different suffixes on the names of generated files.

Changing the names of source-code files listed in aMakefile is usually
not a big problem. What can be amuchbigger problem is changing numerous
#include directives in source-code files, because most source-code files in a
project may#include one or more CORBA-related header files. ThePorta-
bility of C++ CORBA Applicationschapter of theCORBA Utilitiespackage
[McH] discusses this issue in depth and explains how investing a few hours
of up-front work on this issue at the start of a project can produce portable
#include directives that can save days or even weeks of frustration later on
when porting an application.

25.1.3 Configuration and Logging APIs

CORBA does not provide standardized APIs for: (1) obtaining runtime con-
figuration values, or (2) directing diagnostic messages to a log file. However,
most CORBA products provide proprietary APIs for these purposes. This is be-
cause the internals of CORBA products require such capabilities, and CORBA
vendors often decide to expose these internally-required capabilities to appli-
cation developers. If you avoid use of these proprietary APIs then porting to a
different CORBA product will be much easier. If youmustmake use of such
proprietary APIs then you should not access them directly, but rather write a
thin “portability wrapper” API around them. In this way, you minimize the
amount of code that must be modified when porting an application.

25.1. CORBA PORTABILITY ISSUES 249

25.1.4 Implementation Repositories

As Chapter7 discusses, CORBA has not standardized upon the “look and feel”
of implementation repositories(IMRs) and, for this reason, there is consider-
able difference between the IMRs of different CORBA products. Put simply,
there is no portability in the administration of CORBA applications across dif-
ferent CORBA products.

Some server deployment models (Section8.2.2on page88) require use of
proprietary APIs in some CORBA products. Direct use of these proprietary
APIs can obviously hinder portability. TheCreation of POA Hierarchies Made
Simplechapter of theCORBA Utilitiespackage [McH] discusses a Java and
C++ class that provides a “portability wrapper” around such proprietary APIs,
while simultaneously simplifying application development.

25.1.5 Multi-threaded Servers

Section6.1.2.1on page61 explained that theORBCTRL MODELPOA pol-
icy has under-defined semantics. Most CORBA products either implement a
thread pool for this policy or offer a thread pool as one of a configurable set of
alternatives for this policy. For this reason, it is reasonably portable to assume
that this POA policy is implemented as a thread pool, where the size of the
thread pool is determined through an entry in a configuration file, and that the
thread pool is created automatically by the CORBA runtime system. However,
one notable exception to this is TAO, which is a C++ freeware implementa-
tion of CORBA. TAOdoessupport thread pool semantics for theORBCTRL
MODELPOA policy. However, TAO requires that the application programmer
create all the threads in the thread pool, and each of these threads must call
orb->run() , which is how the application-level threads become part of the
thread pool.

The pseudocode in Figure25.1shows how to write aportableC++ server
that uses a thread pool forORBCTRL MODELPOAs. The important point is to
have two portability “wrapper” functions for creating and destroying a thread
pool. Usage of these is shown at lines 1 and 3, respectively. All but one of the
threads for the thread pool are created at line 1; the last thread in the thread
pool is the main thread that callsorb->run() directly (line 2).

The implementation of the portability wrapper functions is given in Fig-
ure25.2. The implementation uses the existence of theP USETAOpreproces-
sor symbol (a discussion of which can be found elsewhere [McH, Ch. 4]) to
choose between the TAO-specific code for creating and destroying a thread
pool, or dummy implementations of the functions that are appropriate for most
other C++ CORBA implementations.

250 CHAPTER 25. PORTABILITY OF CORBA APPLICATIONS

int main(int argc, char * argv[])
{

thread_pool_size = ...;
exit_status = 0;
orb = CORBA::ORB::_nil();
try {

orb = CORBA:: ORBinit (argc, argv);
... // create POAs to contain servants
... // create servants and activate into POAs
... // export object references
... // activate POA managers

1 create tao thread pool (orb, thread_pool_size - 1);
2 orb->run() ;

} catch(const CORBA::Exception & ex) {
cout << "Something went wrong: " << ex << endl;
exit_status = 1;

}
3 wait for tao thread pool to terminate ();

// Terminate gracefully
try {

if (!CORBA::is_nil(orb)) { orb->destroy() ; }
} catch(CORBA::Exception & ex) {

cout << "Something went wrong: " << ex << endl;
exit_status = 1;

}
return exit_status;

};

Figure 25.1:Server mainline using portability abstraction for TAO thread pools

25.2 Non-CORBA Portability Issues with C++

When porting an application from one CORBA product to another, develop-
ers sometimes also switch from one compiler to another or from one operating
system to another. Such switches of compiler or operating system do not affect
Java-based applications very much, because Java provides a “virtual machine”
that is (supposed to be) portable across all Java compilers and operating sys-
tems. Actually, when Java was first released, there were promises that it was
a “write once, run everywhere” language. When developers noticed that Java-
based applications did not run as fast as C or C++-based applications, some
cynics said that Java was a “write once, crawl everywhere” language. Some

25.2. NON-CORBA PORTABILITY ISSUES WITH C++ 251

#ifdef P USETAO
#include "ace/Task.h"
class Worker : public ACE_Task_Base {

CORBA::ORB_var m_orb;
public:

Worker(CORBA::ORB_ptr orb) {
m_orb = CORBA::ORB::_duplicate(orb);

}
virtual int svc(void) {

try {
m_orb->run();

} catch(...) { }
return 0;

}
};
static Worker * w = 0;
void create tao thread pool (CORBA::ORB_ptr orb, int count)

throw(std::string)
{

w = new Worker(orb);
if (w->activate(THR_NEW_LWP | THR_JOINABLE, count)!=0)
{

delete w;
w = 0;
throw std::string("Cannot create thread pool");

}
}
void wait for tao thread pool to terminate () {

if (w != 0) {
w->thr_mgr()->wait();
delete w;
w = 0;

}
}
#else // dummy implementation for other CORBA products
void create tao thread pool (CORBA::ORB_ptr orb, int count)

throw(std::string)
{ }
void wait for tao thread pool to terminate () { }
#endif

Figure 25.2:Portability wrapper for TAO thread pools

252 CHAPTER 25. PORTABILITY OF CORBA APPLICATIONS

other developers encountered subtle differences in behavior in the Java Vir-
tual Machine (JVM) on different operating systems and so said that Java was
a “write once, debug everywhere” language. However, problems with perfor-
mance and JVM differences have decreased over the years and, nowadays, Java
applications tend to be very portable.

Switching compilers or operating systems tends to be much more trouble-
some for C++-based applications than for Java-based applications. The follow-
ing subsections discuss some problematic areas that you should watch out for
in C++ applications.

25.2.1 Cross-platform Portability

For some reason, supposedly portable applications developed on Windows of-
ten accidentally use Windows-proprietary APIs.1 This is usually discovered
only when the application is then ported to a UNIX platform. By that time,
the use of Windows-proprietary APIs may be so widespread in the application
that the porting becomes a major effort. For example, the Windows-proprietary
CString class is often accidentally used in supposedly portable applications
when the standard (and hence portable) C++ classstd::string would do
just as well. Some companies who have found themselves with a supposedly
portable application that has been accidentally tied toCString have found
it quicker to reverse engineerthe CString class so they can write a UNIX
version rather than remove the use ofCString from their application. Some
companies end up reverse engineering large parts of Microsoft’s MFC class li-
brary so that they can write a UNIX version, just to port a Windows application
to UNIX.

To guard against such difficulties in the future porting of applications, it is
useful if at least one developer with some UNIX experience works on the team
that has the task of developing a portable application initially on Windows.

If your CORBA applications will have a graphical user interface (GUI)
then you might wish to consider use of a cross-platform GUI toolkit. One such
toolkit is wxWindows (www.wxwindows.org).

25.2.2 Theiostream Library

Although C++ dates from the early 1980s, the language was not standardized
until the mid-1990s. In pre-standardized C++, many header files had".h"

1 The reverse is not true. Supposedly portable applications developed on UNIX tend to bemuch
easier to port to Windows than supposedly portable applications developed on Windows are to port
to UNIX.

25.2. NON-CORBA PORTABILITY ISSUES WITH C++ 253

extensions, for example,<iostream.h> . The standardization committee
decided to make two important changes to standard header files:

1. The ".h" extension was dropped, for example,<iostream.h> be-
came<iostream> .

2. The types and variables defined in these standard header files were de-
fined in thestd namespace rather than in the global scope, for example,
cout becamestd::cout .

In many compilers, the new standardized types arenot type compatible with
the older, pre-standardized types. Many projects have wasted weeks or months
in porting code originally written for use with the pre-standardized types to use
the standardized types. It is not uncommon for this porting headache to raise
its head only when an application is being ported from one CORBA product
or operating system to another. ThePortability of C++ CORBA Applications
chapter of theCORBA Utilitiespackage [McH] discusses this issue in depth
and explains how investing a few hours of up-front work on this issue can
result in the ability to write code that compiles correctly with either the pre-
standardized or the standardized C++ library. The advice in that document can
dramatically reduce the time required to port applications.

25.2.3 Synchronization in C++ Applications

The C++ language does not define standard APIs for synchronization. Instead,
synchronization APIs vary a lot from one operating system to another. Many
UNIX platforms now support the POSIX Threads standard, but it is still pos-
sible to use proprietary APIs on some flavors of UNIX. Also, Windows uses
its own proprietary APIs instead of POSIX APIs. Because of this, porting a
multi-threaded application between different operating systems can involve an
enormous amount of tedious work if the application was written to use the
native synchronization APIs of the original platform.

Many organizations have tried to write their own “portability wrapper”
around the low-level synchronization APIs of an operating system. However,
doing this is fraught with difficulties. For example, it is very difficult tocor-
rectly and efficientlyemulate POSIX condition variables with the synchroniza-
tion APIs of Windows.

Many CORBA products work on several operating systems and it is com-
mon for a CORBA product to provide its own, proprietary “portability wrap-
per” for synchronization APIs. Use of these libraries provides portability across
different operating systems, but makes it difficult to port an application from
one CORBA product to another.

254 CHAPTER 25. PORTABILITY OF CORBA APPLICATIONS

The Generic Synchronization Policies (GSP) class library [McH, Ch. 7]
provides cross-platform synchronization support and is not tied to a particular
CORBA product. It offers an additional benefit in that it does not try to mimic
low-level APIs provided by an operating system, but rather provides a high-
level API that simplifies the writing of multi-threaded programs.

Chapter 26

Other CORBA Resources

26.1 Books and Articles

Most CORBA products are provided with manuals although, as you might ex-
pect, the quality of the documentation varies from one product to another. In
general, you are likely to obtain less documentation with a freeware CORBA
implementation than with a commercial product. Regardless of which CORBA
product you choose, you may wish to supplement its documentation with a
book. A good way to choose a book is to visitwww.amazon.com and use its
search engine to help you browse CORBA books. The customer reviews will
help you choose a good book. Some of this author’s favorite CORBA books
are listed below:

• Pure CORBA[Bol01] is aimed at developers who are new to CORBA.
It talks the reader through the concepts of CORBA and provides lots
of useful code examples in both C++and Java. Providing examples in
C++ and Java means that the book is certainly of relevance to developers
who use one of those languages. However, there is another benefit of
this dual-language approach. When people learn CORBA through one
specific language, often they are unable to distinguish between what is
a general principle of CORBA and what is specific to the particular pro-
gramming language that they use. ThePure CORBAapproach of teach-
ing CORBA throughtwo languages helps readers to distinguish between
general CORBA principles and language-specific issues.

• Advanced CORBA Programming with C++[HV99] is not an introduc-
tory book on CORBA, but rather is an excellent book for people who are

255

256 CHAPTER 26. OTHER CORBA RESOURCES

already familiar with CORBA to improve their skills. Although the book
uses C++ in all the code examples, the principles it teaches are relevant
to CORBA developers who use other languages.

• IIOP Complete[RHK99] should be avoidedunlessyou have a need to
learn about the low-level details of the GIOP and IIOP protocols (Chap-
ter 11). However, if youdo have such a need then this book provides
a very clear explanation of the concepts. This book is now out of date,
because it discusses versions 1.0 and 1.1 of GIOP, while CORBA is
now at version 1.3. However, although some of the details have changed
between different versions of the protocol, the basic principles are the
same. Because of this, if you need to become familiar with GIOP 1.2 or
1.3 then a good way to do so is to read this book and then download the
latest GIOP specification (as a PDF file) from the OMG web site.

Douglas Schmidt, who headed the development of TAO, and Steve Vinoski,
who headed the development of Orbix, have published many interesting articles
on CORBA. You can obtain electronic versions of many of their papers from
their web pages:

www.iona.com/hyplan/vinoski/
www.cs.wustl.edu/ ∼schmidt/

26.2 The CORBA Utilities Package

TheCORBA Utilitiespackage is a collection of documented software utilities
that dramatically simplify CORBA development. The collection is available as
a free download from the following URL:

www.iona.com/devcenter/corba/utilities.htm

The utilities are available in both C++ and Java, and are known to work out-
of-the-box with Orbix, Orbacus, TAO and omniORB. A lot of attention has
been paid to portability of the utilities so it should be quite easy to get the
utilities working with other CORBA products. Even if you decide to not use
the utilities in your own projects, the documentation provided with the utilities
is worth reading for the useful advice that it provides.

26.3 Internet Resources

The OMG web sites (www.omg.org andwww.corba.org) provide free
access to a lot of information on CORBA. You can download CORBA specifi-

26.4. CONSULTANCY AND TRAINING COURSES 257

cation documents in the form of PDF files. The web sites also provides links
to other CORBA-related online resources.

The following Internet newsgroups are for discussing CORBA:

comp.object.corba
comp.lang.java.corba

Contributors on those newsgroups (which include some employees of several
CORBA vendors) are usually happy to answer questions and offer advice.

Some CORBA vendors have their own newsgroups and/or mailing lists
dedicated to their own products. You should ask your CORBA vendor for
details.

As discussed in Section2.7 on page20, you can find numerous examples
of CORBA success stories on the OMG web sites and the web sites of CORBA
vendors.

26.4 Consultancy and Training Courses

Some CORBA vendors, and also some independent companies, offer CORBA
training courses and consultancy. You can contact an individual company to
see what services they offer. Another option is to use an Internet search engine
to find companies that offer CORBA training and consultancy.

Consultancy is often perceived as being expensive. Indeed, it can be if your
organization hires a consultant for the entire duration of a long-term project.
However, there is a much more cost-effective way of using consultancy ser-
vices:

• When you are starting a CORBA-based project, have a consultant visit
you for a few days, to help you define or “sanity check” the project’s
architecture. Experienced consultants can often spot architectural flaws
that, if not corrected, would have a significant performance or scalability
impact later in the project.

• Later, when doing the initial coding for a project, have the same consul-
tant return to mentor developers in the use of good coding idioms and
help them avoid common coding mistakes.

• The consultant could then return for a few days every month to “sanity
check” progress on the project. In this way, any deviation from good
CORBA practice can be spotted and corrected relatively soon, thus sav-
ing the project from greater problems (and expense) later on.

258 CHAPTER 26. OTHER CORBA RESOURCES

Many organizations make the mistake of sending developers on a training
course to learn new skills that will not be used until many months later. By the
time the skills are finally required, the developers will have forgotten them. If
feasible, it is much more productive to have an on-site, CORBA training course
at the start of a project. In this way, the developers will be able to practice the
new skills in their work straight away. Also, by timing the training course to
coincide with the start of the project, the developers will be able to ask the
course instructor questions about how to use what they learn from the course
in their project.

A training course will be the most effective if the instructor is a consultant
who isalready familiarwith your intended project. In such cases, the instruc-
tor is often able to pro-actively point out to developers how specific CORBA
concepts and coding idioms can be used effectively in the project.

Much of the information in this book is taken from material in training
courses offered by IONA technologies. If this book has provided you with a
useful overview of the concepts of CORBA then you might want to consider at-
tending an IONA training course to obtain the skills necessary for development
of CORBA applications.

Bibliography

[Bla99] Bob Blakely.CORBA Security: An Introduction to Safe Computing
With Objects. Addison-Wesley, 1999. ISBN 0201325659.

[Bol01] Fintan Bolton. Pure CORBA. Sams, 2001. 921 pages.
ISBN 0672318121.

[BVD01] Gerald Brose, Andreas Vogel, and Keith Duddy.Java Program-
ming with CORBA, third edition. Wiley Computer Publishing, 2001.
710 pages. ISBN 0471376817.

[HV99] Michi Henning and Steve Vinoski.Advanced CORBA Programming
with C++. Addison-Wesley, 1999. 1120 pages.

[Koc00] Richard Koch. The 80/20 Principle: The Secret of Achieving
More With Less. Nicholas Breealey Publishing Ltd., May 2000.
ISBN: 187881680. 312 pages.

[KPS02] Charlie Kaufman, Radia Perlman, and Mike Speciner.Network Se-
curity: Private Communication in a Public World. Prentice Hall,
2002. ISBN 0130460192.

[MBB00] H. X. Mel, Doris Burnett, and Doris M. Baker.Cryptography De-
crypted. Addison Wesley, 2000. 256 pages. ISBN 0201616475.

[McH] Ciaran McHale. CORBA Utilities. Available atwww.
CiaranMcHale.com/download/ .

[OMGa] OMG. Common Security Interoperability (CSIv2). Available for
download fromwww.omg.org both as a stand-alone document
and as a chapter in the CORBA Specification.

[OMGb] OMG. CORBA Security Specification (verison 1.8). Available for
download fromwww.omg.org .

259

260 BIBLIOGRAPHY

[RHK99] William Ruh, Thomas Herron, and Paul Klinker.IIOP Com-
plete: Middleware Interoperability and Distributed Object Stan-
dards. Addison-Wesley, 1999. 288 pages. ISBN 0201379252.

[Sch95] Bruce Schneier. Applied Cryptography: Protocols, Algorithms
and Source Code in C. John Wiley & Sons Inc, 1995.
ISBN 0471128457.

[SGR99] Dirk Slama, Jason Garbis, and Perry Russell.Enterprise CORBA.
Prentice Hall PTR, 1999. 366 pages.

[SV99a] Douglas C. Schmidt and Steve Vinoski. Programming Asynchro-
nous Method Invocations with CORBA Messasing (Object Con-
nections, column 16). SIGS C++ Report, 11, February 1999.
Available from Steve Vinoski’s web page atwww.iona.com/
hyplan/vinoski/ or from Doug Schmidt’s web page atwww.
cs.wustl.edu/ ∼schmidt/ .

[SV99b] Douglas C. Schmidt and Steve Vinoski. Time-Independent Invoca-
tion Interoperable Routing (Object Connections, column 16).SIGS
C++ Report, 11, April 1999. Available from Steve Vinoski’s web
page atwww.iona.com/hyplan/vinoski/ or from Doug
Schmidt’s web page atwww.cs.wustl.edu/ ∼schmidt/ .

