
1

Introduction to Java Reflection

Java Reflection
Explained Simply

CiaranMcHale.com

Introduction to Java Reflection 2

License
Copyright © 2008 Ciaran McHale.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
training course and associated documentation files (the “Training Course"), to deal in
the Training Course without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Training
Course, and to permit persons to whom the Training Course is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Training Course.

THE TRAINING COURSE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE TRAINING COURSE
OR THE USE OR OTHER DEALINGS IN THE TRAINING COURSE.

3

1. Introduction

Introduction to Java Reflection 4

What is reflection?
n When you look in a mirror:

- You can see your reflection
- You can act on what you see, for example, straighten your tie

n In computer programming:
- Reflection is infrastructure enabling a program can see and manipulate

itself
- It consists of metadata plus operations to manipulate the metadata

n Meta means self-referential
- So metadata is data (information) about oneself

Introduction to Java Reflection 5

Widespread ignorance of Java reflection
n Typical way a developer learns Java:

- Buys a large book on Java
- Starts reading it
- Stops reading about half-way through due to project deadlines
- Starts coding (to meet deadlines) with what he has learned so far
- Never finds the time to read the rest of the book

n Result is widespread ignorance of many “advanced” Java
features:

- Many such features are not complex
- People just assume they are because they never read that part of the

manual
- Reflection is one “advanced” issue that is not complex

Introduction to Java Reflection 6

Is reflection difficult?
n When learning to program:

- First learn iterative programming with if-then-else, while-loop, …
- Later, learn recursive programming

n Most people find recursion difficult at first
- Because it is an unusual way of programming
- But it becomes much easier once you “get it”

n Likewise, many people find reflection difficult at first
- It is an unusual way of programming
- But it becomes much easier once you “get it”
- Reflection seems natural to people who have written compilers

(a parse tree is conceptually similar to metadata in reflection)

n A lot of reflection-based programming uses recursion

7

2. Metadata

Introduction to Java Reflection 8

Accessing metadata
n Java stores metadata in classes

- Metadata for a class: java.lang.Class
- Metadata for a constructor: java.lang.reflect.Constructor
- Metadata for a field: java.lang.reflect.Field
- Metadata for a method: java.lang.reflect.Method

n Two ways to access a Class object for a class:

Class c1 = Class.forName(“java.util.Properties”);
Object obj = ...;
Class c2 = obj.getClass();

n Reflection classes are inter-dependent
- Examples are shown on the next slide

Introduction to Java Reflection 9

Examples of inter-relatedness of reflection classes
class Class {

Constructor[] getConstructors();
Field getDeclaredField(String name);
Field[] getDeclaredFields();
Method[] getDeclaredMethods();
...

}

class Field {
Class getType();
...

}

class Method {
Class[] getParameterTypes();
Class getReturnType();
...

}

Introduction to Java Reflection 10

Metadata for primitive types and arrays
n Java associates a Class instance with each primitive type:

Class c1 = int.class;
Class c2 = boolean.class;
Class c3 = void.class;

n Use Class.forName() to access the Class object for an array
Class c4 = byte.class; // byte
Class c5 = Class.forName(“[B”); // byte[]
Class c6 = Class.forName(“[[B”); // byte[][]
Class c7 = Class.forName(“[Ljava.util.Properties”);

n Encoding scheme used by Class.forName()
- B à byte; C à char; D à double; F à float; I à int; J à long;

Lclass-name à class-name[]; S à short; Z à boolean
- Use as many “[”s as there are dimensions in the array

Might be returned by
Method.getReturnType()

Might be returned by
Method.getReturnType()

Introduction to Java Reflection 11

Miscellaneous Class methods
n Here are some useful methods defined in Class

class Class {
public String getName(); // fully-qualified name
public boolean isArray();
public boolean isInterface();
public boolean isPrimitive();
public Class getComponentType(); // only for arrays
...

}

12

3. Calling constructors

Introduction to Java Reflection 13

Invoking a default constructor
n Use Class.newInstance() to call the default constructor

Example:

abstract class Foo {
public static Foo create() throws Exception {

String className = System.getProperty(
“foo.implementation.class”,
“com.example.myproject.FooImpl”);

Class c = Class.forName(className);
return (Foo)c.newInstance();

}
abstract void op1(...);
abstract void op2(...);

}
...
Foo obj = Foo.create();
obj.op1(...);

Default
value

Default
value

Name of
property

Name of
property

Introduction to Java Reflection 14

Invoking a default constructor (cont’)
n This technique is used in CORBA:

- CORBA is an RPC (remote procedure call) standard
- There are many competing implementations of CORBA
- Factory operation is called ORB.init()
- A system property specifies which implementation of CORBA is used

n A CORBA application can be written in a portable way
- Specify the implementation you want to use via a system property

(pass –D<name>=<value> command-line option to the Java
interpreter)

n Same technique is used for J2EE:
- J2EE is a collection of specifications
- There are many competing implementations
- Use a system property to specify which implementation you are using

Introduction to Java Reflection 15

A plug-in architecture
n Use a properties file to store a mapping for

plugin name à class name
- Many tools support plugins: Ant, Maven, Eclipse, …

abstract class Plugin {
abstract void op1(...);
abstract void op1(...);

}
abstract class PluginManager {

public static Plugin load(String name)
throws Exception {

String className = props.getProperty(name);
Class c = Class.forName(className);
return (Plugin)c.newInstance();

}
}
...
Plugin obj = PluginManager.load(“...”);

Introduction to Java Reflection 16

Invoking a non-default constructor
n Slightly more complex than invoking the default constructor:

- Use Class.getConstructor(Class[] parameterTypes)
- Then call Constructor.newInstance(Object[] parameters)

abstract class PluginManager {
public static Plugin load(String name)

throws Exception {
String className = props.getProperty(name);
Class c = Class.forName(className);
Constructor cons = c.getConstructor(

new Class[]{String.class, String.class});
return (Plugin)cons.newInstance(

new Object[]{“x”, “y”});
}

}
...
Plugin obj = PluginManager.load(“...”);

Introduction to Java Reflection 17

Passing primitive types as parameters
n If you want to pass a primitive type as a parameter:

- Wrap the primitive value in an object wrapper
- Then use the object wrapper as the parameter

n Object wrappers for primitive types:
- boolean à java.lang.Boolean
- byte à java.lang.Byte
- char à java.lang.Character
- int à java.lang.Integer
- ...

18

4. Methods

Introduction to Java Reflection 19

Invoking a method
n Broadly similar to invoking a non-default constructor:

- Use Class.getMethod(String name,
Class[]parameterTypes)

- Then call Method.invoke(Object target,
Object[] parameters)

Object obj = ...
Class c = obj.getClass();
Method m = c.getMethod(“doWork”,

new Class[]{String.class, String.class});
Object result= m.invoke(obj, new Object[]{“x”,“y”});

Introduction to Java Reflection 20

Looking up methods
n The API for looking up methods is fragmented:

- You can lookup a public method in a class or its ancestor classes
- Or, lookup a public or non-public method declared in the specified class

class Class {
public Method getMethod(String name,

Class[] parameterTypes);
public Method[] getMethods();
public Method getDeclaredMethod(String name,

Class[] parameterTypes);
public Method[] getDeclaredMethods();
...

}

A better name
would have been

getPublicMethod()

A better name
would have been

getPublicMethod()

Introduction to Java Reflection 21

Finding an inherited method
n This code searches up a class hierarchy for a method

- Works for both public and non-public methods

Method findMethod(Class cls, String methodName,
Class[] paramTypes)

{
Method method = null;
while (cls != null) {

try {
method = cls.getDeclaredMethod(methodName,

paramTypes);
break;

} catch (NoSuchMethodException ex) {
cls = cls.getSuperclass();

}
}
return method;

}

22

5. Fields

Introduction to Java Reflection 23

Accessing a field
n There are two ways to access a field:

- By invoking get- and set-style methods (if the class defines them)
- By using the code shown below

Object obj = ...
Class c = obj.getClass();
Field f = c.getField(“firstName”);
f.set(obj, “John”);
Object value = f.get(obj);

Introduction to Java Reflection 24

Looking up fields
n The API for looking up fields is fragmented:

- You can lookup a public field in a class or its ancestor classes
- Or, lookup a public or non-public field declared in the specified class

class Class {
public Field getField(String name);
public Field[] getFields();
public Field getDeclaredField(String name);
public Field[] getDeclaredFields();
...

}

A better name
would have been

getPublicField()

A better name
would have been

getPublicField()

Introduction to Java Reflection 25

Finding an inherited field
n This code searches up a class hierarchy for a field

- Works for both public and non-public fields

Field findField(Class cls, String fieldName)
{

Field field = null;
while (cls != null) {

try {
field = cls.getDeclaredField(fieldName);
break;

} catch (NoSuchFieldException ex) {
cls = cls.getSuperclass();

}
}
return field;

}

26

6. Modifiers

Introduction to Java Reflection 27

Java modifiers
n Java defines 11 modifiers:

- abstract, final, native, private, protected, public, static,
strictfp, synchronized, transient and volatile

n Some of the modifiers can be applied to a class, method or
field:

- Set of modifiers is represented as bit-fields in an integer
- Access set of modifiers by calling int getModifiers()

n Useful static methods on java.lang.reflect.Modifier:
static boolean isAbstract(int modifier);
static boolean isFinal(int modifier);
static boolean isNative(int modifier);
static boolean isPrivate(int modifier);
...

Introduction to Java Reflection 28

Accessing non-public fields and methods
n Both Field and Method define the following methods

(inherited from java.lang.reflect.AccessibleObject):

boolean isAccessible();
void setAccessible(boolean flag);
static void setAccessible(AccessibleObject[] array,

boolean flag);

n Better terminology might have been
“SuppressSecurityChecks” instead of “Accessible”

n Example of use:
if (!Modifier.isPublic(field.getModifiers()) {

field.setAccessible(true);
}
Object obj = field.get(obj); Hibernate uses this technique

so it can serialize non-public
fields of an object to a database

Hibernate uses this technique
so it can serialize non-public

fields of an object to a database

29

7. Further reading and summary

Introduction to Java Reflection 30

Further reading
n There are very few books that discuss Java reflection

- An excellent one is Java Reflection in Action
by Ira R. Forman and Nate Forman

- It is concise and easy to understand

n Main other source of information is Javadoc documentation

Introduction to Java Reflection 31

Summary
n This chapter has introduced the basics of Java reflection:

- Metadata provides information about a program
- Methods on the metadata enable a program to examine itself and take

actions

n Reflection is an unusual way to program:
- Its “meta” nature can cause confusion at first
- It is simple to use once you know how

n The next chapter looks at a reflection feature called
dynamic proxies

