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Summary of Contribution

This thesis concerns itself with the topic of synchronisation in concurrent, object-oriented

languages (COOPLs) and makes contributions in three areas.

The Sos paradigm. This thesis introduces the Sos paradigm for the design of synchroni-

sation mechanisms. This paradigm offers several important benefits. In particular:

e Bloom [Blo79] argues that for a synchronisation mechanism to have good expressive
power, it must have access to six different types of information: the name of the invoked
operation, parameters, instance variables, the relative arrival time of invocations, the
current synchronisation state of the object and information about what operations have

executed in the past.

The Sos paradigm shows that all this information needed for good expressive power
comes from just a single source. Thus, by accessing this information in its original, uni-
fied form, a Sos-based synchronisation mechanism can have at least as much expressive

power as other mechanisms that access the information in a piecemeal fashion.

e Many languages [DDR*91] [And81] [Atk90] [Tho92] [GWI1] [Tho94] [L6h93] [LL94]
[GCI2] [Ber94] [Cou94] permit synchronisation code to access instance variables but do
not provide any means to ensure that such variables are not accessed while they are in

an inconsistent state.

The Sos paradigm shows that, contrary to popular belief, a synchronisation mechanism
does not need to access the instance variables of an object; synchronisation code can

maintain its own variables.

e Many languages [Ada83] [MKS87] [LR80] [Sel90] [TS89] [KL89] [Nie87] [TA88] [BI92]
permit synchronisation code to be mixed in with sequential code in an attempt to

increase the expressive power of the language’s synchronisation mechanism.

In contrast, the synchronisation code of a Sos-based mechanism can be completely
separated from sequential code, without any loss of expressive power. This separation

is a form of modularity which aids code writing, maintenance and reuse.

We illustrate the above benefits of the SOs paradigm via a sample synchronisation mecha-
nism, Esp, the expressive power of which is shown through numerous examples. In particular,

Esp excels at specifying scheduling and liveness constraints.



Many synchronisation mechanisms are declarative in nature: programmers simply declare
(specify) what synchronisation policy they want and the implementation will be derived
automatically from this specification. While declarative mechanisms are elegant and concise,
they usually have limited expressive power and hence can specify only a few synchronisation
policies. In contrast to declarative mechanisms, some mechanisms are procedural. In these,
synchronisation policies are implemented via algorithms. Although more verbose and complex
to use than declarative mechanisms, procedural mechanisms can generally implement a wider
range of policies. A unique benefit of our Esp mechanism is that it is both declarative
and procedural at the same time, and offers the best of both worlds: the elegance and
conciseness of declarative mechanisms is combined with the ability to implement a wide
range of synchronisation policies.

Finally, our prototype implementation of the Esp mechanism shows that the concepts of

the Sos paradigm can be easily added to an object-oriented language.

Generic synchronisation policies. Several different synchronisation policies, e.g., mutual
exclusion and readers/writer, occur frequently in practice. It is error-prone to have to re-
implement such policies time and time again in different classes that use them. It would be
preferable to write generic versions of such policies that could then be instantiated upon the
operations of a class as desired. For example, consider a class that contains three operations,
A, B and C', that examine some instance variables, and two other operations, D and F, that

update instance variables. A suitable policy for this class might be as follows:
ReadersWriter[ {A, B, C}, {D, E} ]

This is a readers/writer policy that is instantiated upon two sets of operations. The first,
“{A, B, C}”, is a set of read-style operations and the second, “{D, E}”, a set of write-style
operations.

Some languages already provide limited support for generic synchronisation policies [Atk90]
[LL94] [CLI1] [BFS93]. In this thesis, we show that Sos paradigm makes it possible to provide
comprehensive language support for generic synchronisation policies. The most obvious ben-
efit of generic synchronisation policies is code reuse. However, we demonstrate that generic
synchronisation policies offer additional benefits, including facilitating the optimisation of

synchronisation code.

Analysis of the problems with the use of inheritance in COOPLs. A common
belief is that there is a conflict between synchronisation and inheritance that can hinder
the reuse of code [TS89] [KL89] [Neu91] [GWI1] [Tho94] [Loh93] [BBIt] [Mes93] [BFS93]
[Mat93] [Cou94] [Ber94]. We show that this perception of the conflict is incorrect; rather,
the problem is rooted in the conflicting interaction of two different uses of inheritance. We
survey the conflict in a variety of inheritance mechanisms and show that the use of generic

synchronisation policies can drastically reduce its harmful effects.
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Part 1

Introduction



Introduction to Part 1

Part Iis an introduction to this thesis. It contains two chapters.
Chapter 1 provides some background information for readers who are not overly familiar
with the area of synchronisation for concurrent, object-oriented languages.

Chapter 2 discusses the aims of this thesis in detail.



Chapter 1

Background Information

This chapter provides some background information for readers who might not be familiar

with the area of synchronisation in concurrent, object-oriented languages (COOPLs).
Section 1.1 starts with a brief introduction to object-orientation. Section 1.2 provides

a brief introduction to concurrency. Sections 1.3 through to 1.6 provide overviews of some

synchronisation mechanisms.

1.1 Object-orientation

As the capabilities of computers have grown, so too have the size and complexity of appli-
cations written for them. This has resulted in continual development of techniques to help
programmers control the inherent complexity of large software systems. Obvious examples
include the development of high-level languages to boost productivity over assembler and
the dropping of “goto” statements in favour of structured programming. Another important
development is that of abstract data types (ADTs) to encapsulate the implementation of a
resource and permit other parts of a program to access the resource only via exported opera-
tions (procedures and functions). Not only do ADTs aid in constructing modular programs,
they also ensure that parts of a program that access a resource are protected from future
possible changes to the resource’s implementation.

Object-orientation [Mey88] is a refinement of the concept of ADTs. We use the term type
to denote the specification aspect of an ADT, e.g., its list of exported operations, and the
term class to denote its implementation.

One refinement that object-orientation adds to ADTs is the concept of inheritance which
we now briefly discuss. It is common for the code of several classes to be similar. In such cases,
repetition of code can be avoided by defining a class as an incremental modification of other
classes. The newly defined class is called a subclass of its parent classes. A subclass might
introduce new operations or selectively re-implement some operations inherited from parent
classes. Even if a subclass re-implements an operation, the re-implemented operation can

make a “super” call to the corresponding operation in a parent class, thereby incrementally



modifying the operation rather than re-implementing it anew. Languages that restrict a class
to have at most one parent class are said to employ single inheritance. If a class can have
multiple parents then the language is said to permit multiple inheritance.

Just as one class may be implemented as an incremental modification of another class, so
too may one type (a subtype) be defined as an incremental modification of another type (its
parent type).

It is possible to imagine that several classes may implement one type. However, some
languages impose a one-to-one mapping between types and their implementations (classes)
and then further simplify this by merging the concepts of type and class. While this union
offers simplicity, it also has some drawbacks [Ame87, Sny86].

1.2 Concurrent Programing

There are several benefits of concurrent systems. One is that an application that takes a long
time to run may be speeded up by dividing the work of the application into separate processes
that can be run concurrently on different CPUs. Even on a single CPU system, a concur-
rent program might run faster than an equivalent sequential program if the input/output
operations of one process overlap with the CPU-intensive executions of another task.

Another potential benefit of concurrency is that some applications are naturally concur-
rent and cannot be easily written in a sequential language. Ideally, such applications should
be easier to write in a concurrent language. However, research into language constructs to
aid concurrent programming has yet to mature and it can still be difficult to write concur-
rent applications. It is widely accepted that the encapsulation and modularity offered by the
object-oriented paradigm are useful in controlling the inherent complexity of concurrent pro-
gramming and this has lead to the development of concurrent, object-oriented programming
languages (COOPLs).

Uncontrolled concurrency can be dangerous. For example, if one process examines (reads)
an object while it is being updated (written) concurrently by another process then the first
process might see the object while it is in a temporarily inconsistent state. Similarly, if two
processes try to update the same object concurrently then the overlapping updates might leave
the object in an inconsistent state. To guard against such problems, a system must provide
a means for different processes to synchronise with each other whenever they concurrently
access the same object. A synchronisation mechanism is a set of language constructs (and/or
primitive operations provided by the operating system) that programmers use to ensure the
correct synchronisation of processes.

The particular synchronisation “protocol” or “policy” that should be used when accessing
an instance of a class can vary from one class to another. For example, all the operations
of one class might be write-style operations in which case processes will probably access an
instance of that class in mutual exclusion (often abbreviated to “mutex”). If a class contains

a mixture of read-style and write-style operations then a “multiple readers/single writer”
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(usually abbreviated to “readers/writer”) policy might be used.

Generally, the code that implements a synchronisation policy is written inside a class,
rather than being spread out among all the clients of that class, which aids modularity
[Blo79] and robustness.

We now move on to give an overview of several different synchronisation mechanisms,

starting with those mechanisms that are based on synchronisation counters.

1.3 Synchronisation Mechanisms Based on Counters

Synchronisation counters were independently developed by Robert and Verjus [RV77] and
Gerber [Ger77]. They are variables of an object that count the total number of invocations for
each operation of the object that have actually arrived at the object, have started execution
and have terminaled execution, etc. Synchronisation counters are quite common and can
be found in numerous synchronisation mechanisms [DDR*91] [MWBD91] [CGM91] [And79]

[GW91] [Cou94]. Usually, there are five counters for each operation of an object. These are:!

arrival(Op):  total number of invocations to execute operation Op that have

arrived at this object.

wait(Op) : current number of invocations that are waiting to execute Op.

start(Op) : total number of invocations that have started executing Op.

erec(Op) : current number of invocations that are executing Op.

term(Op) : total number of invocations that have terminated execution of
Op.

Only three counters, arrival, start and term, need be maintained since the other two can be

expressed in terms of them as follows:

wait(Op) = arrival(Op) — start(Op)
exec(Op) = start(Op) — term(Op)

Synchronisation counters are most often used in guards: conditions associated with oper-
ations of an object. When an operation is invoked, the invocation is blocked until its guard
becomes true. An example to illustrate the usage of guards can be seen in the class in Fig-
ure 1.1. This example also introduces the pseudo-code notation that is used throughout most
of this thesis. The notation should be intuitive to most readers. Braces (“{...}”) are used to
denote scope. The constructor of a class is denoted by an operation whose name is identical
to the name of the class. A keyword, synchronisation, separates the sequential operations

of a class from their guards. Guards themselves are written in the form:

operation-name: condition

! Unfortunately, there are no standard names for these counters since different synchronisation mechanisms

call them by different names. These are the counter names we use throughout this thesis.



The guards in Figure 1.1 implement a readers/writer policy. An invocation of Read is
permitted to execute if there are currently no executions of Wrile; similarly, an invocation

of Write can execute if there are currently no executions of either Read or Write.

class ReadersWriter {

// declaration of instance variables
ReadersWriter(...) { ... } // constructor
Read(...) { ... }

Write(...) { ... }
synchronisation
Read: ezec(Write) = 0;
Write: ezec(Read) = 0 and ezec(Write) = 0;

Figure 1.1: A class containing Read and Wrile operations and appropriate guards

A shorthand used throughout this thesis is to use “ezec(Opy, Opa,..., Op,) = 07 instead

of the more verbose:
ezec(Op;) = 0 and ezec(Op,) = 0 and ... exec(Op,) =0
Thus, the guard for Write in Figure 1.1 could be rewritten as:
Write: ezec(Read, Write) = 0;

The wait counter is often used to implement a priority scheme. For example, a readers

priority version of the readers/writer policy can be expressed using the following guards:

Read: ezec(Write) = 0;
Write: ezec(Read, Write) = 0 and wait(Read) = 0;

1.3.1 Guide

Synchronisation counters are used in the guard-based synchronisation mechanism of the Guide
language [DDR*91]. The guards can contain not only synchronisation counters but also
instance variables of the object and parameters of the operation being invoked.

The code in Figure 1.2 illustrates the usage of instance variables in guards. In this code,
the variable num records the number of items currently in the buffer. The guards specify
that Put can execute in mutual exclusion if the buffer is not full; similarly Gel can execute
in mutual exclusion if the buffer is not empty.

Several well-known synchronisation policies schedule invocations based on the relative
value of parameters. Although Guide permits parameters of an operation to be used in
guards, this is of little practical use since guards can compare a parameter only to, say,
an instance variable or a constant. No facility is provided to compare a parameter with
the corresponding parameter of other invocations and thus Guide cannot directly implement

policies that schedule invocations based on the relative values of their parameters.



class Buffer[elem, Size] {
int num; ...

Buffer() { ... } // constructor

Put(...){ ...}
Get(...) { ...}

synchronisation
Put: ezec(Put, Get) = 0 and num < Size;
Get: exec(Put, Get) = 0 and num > 0;

Figure 1.2: The Bounded Buffer

1.3.2 Dragoon

DRAGOON’s synchronisation mechanism [Atk90] is similar to that of Guide in that it is based
on guards that contain expressions involving synchronisation counters and instance variables.
Unlike Guide, DRAGOON does not permit parameters to be used in guards. However, by far
the biggest difference concerns the placement of guards. In Guide, guards are written in
the same class as sequential operations, while in DRAGOON they are written in a separate
class—a behavioural class in DRAGOON parlance.

DRAGOON separates synchronisation code from sequential code in this manner in an
attempt to tackle the so-called “inheritance anomaly” (a discussion of which is deferred to
the next chapter). For now, we just present an overview of how behavioural classes are used

in practice.

behavioural class ReadersWriter {

rules ReadOps, WriteOps;

where
ReadOps: ezec(WriteOps) = 0;
WriteOps: ezec(ReadOps, WriteOps) = 0;

Figure 1.3: Dragoon-style ReadersWriter behavioural class

Figure 1.3 shows a behavioural class (expressed in the pseudo-code notation of this thesis
rather than actual DRAGOON syntax) that expresses the basic readers/writer policy. This
policy is expressed not in terms of the actual operations of a class but rather in terms of the
abstract operations, ReadOps and WriteOps, which it rules.

The guards of a behavioural class are applied to the operations of a sequential class by
a technique known as behavioural inheritance. Consider a class, Foo, that implements three
sequential operations, A, B and C. If A and B are read-style operations and C' is a write-

style operation then the ReadersWriter behavioural class could be applied to Foo as shown



in Figure 1.4. The result is known as a behavioured class.

class SynchronisedFoo inherits Foo, ReadersWriter {
where

A, B — ReadOps

C — WriteOps;

Figure 1.4: Dragoon-style behavioural inheritance

Since behavioural classes are written in a manner that is independent of any particular
sequential class, guards cannot directly access the instance variables of a sequential class to
which they are applied. Instead, a guard invokes a boolean operation, the return value of
which indicates the state of the object being synchronised. This is illustrated in Figure 1.5
which implements a bounded buffer policy. During behavioural inheritance, the programmer
will map the two abstract operations, IsFmpty and IsFull, onto actual operations of the
sequential class, the return values of which indicate if the buffer is empty or full, respectively.
These operations will then be invoked as part of evaluating the guards for PutOps and
GetOps. Note that in this behavioural class, muter (mutual exclusion) is a shorthand notation

meaning;:

ezec(all-operations-in-this-class) = 0

behavioural class BoundedBuffer {
rules PutOps, GetOps, IsEmpty, IsFull;
where
PutOps: mutez and not IsFull;
GetOps: muter and not IsEmpty;
IsFull: mutez;

IsEmpty: mutex;

Figure 1.5: Dragoon-style BoundedBuffer behavioural class

1.3.3 Scheduling Predicates

We finish off this discussion of counter-based mechanisms with an overview of Scheduling
Predicates (SP) [MWBD91]. SP was developed by the author and forms part of the con-
tribution of this thesis. As such, it might seem strange to discuss SP in the introductory
part of this thesis. However, we feel it is appropriate for two reasons. Firstly, SP is closely
related to synchronisation counters (as we illustrate later in this section) and so it fits into a

discussion of counter-based mechanisms. Secondly, the next chapter uses SP constructs when



introducing one of the issues that will be addressed in this thesis so it will help if the reader
is familiar with SP before then.

Scheduling Predicates provide a way for guards to compare the parameters, and relative
arrival time of invocations, thus making it easy to implement a range of scheduling policies.
We illustrate SP by example. The following guard is used to impose a FCFS (first-come,

first-served) policy on an operation, Foo:

Foo: ezec(Foo) = 0 and

there_is_no(f in waiting(Foo): f.arr_time < this_inv.arr_time);

The variable f is used to iterate over the set of invocations waiting to execute operation
Foo, and this_inv refers to the invocation for which the guard is being evaluated. Arr_time
is an automatically maintained variable which denotes the time an invocation arrived at the
object. Thus, the above guard says that when an invocation is made upon operation Foo, it

will be blocked until the following two conditions are met:

1. ezec(Foo) = 0 (i.e., there are no current executions of Foo), and

2. there is no invocation, f, currently waiting to execute Foo, which has a smaller arr_time

attribute, i.e., no pending invocation has arrived at the object before this invocation.

If a formal parameter of operation Foo was used in place of arr_time in the above guard then
scheduling would be based on the value of that parameter in waiting invocations.
Scheduling Predicates can iterate over not just invocations that are waiting to execute, but
also those that are actually exzecuting.? We illustrate this by solving the Dining Philosophers
problem. In this problem, a philosopher may eat if there are no other philosophers eating
with a fork which she herself needs. This condition can be restated as: a philosopher may
eat if there are no other philosophers already eating to her left, to her right or at the table

position she wants to use. This is implemented directly in Figure 1.6.

class Table {
Eat(pos: 0..4) { ... }
synchronisation
#define Right(k) ((k + 1) mod 5)
Ftdefine Left(k) ((k + 4) mod 5)
F#tdefine ShareForks(i, j) (Right(i) = jor i = j or Left(i) = j)
Eat: there_is_no(p executing Eat: ShareForks(p.pos, this_inv.pos));

}

Figure 1.6: Scheduling Predicate solution to Dining Philosophers problem

2 An implementation of SP will have the ability to iterate over executinginvocations only if the host language

permits concurrency within objects.



1.3.3.1 Other Scheduling Predicates

The there_is_no predicate is akin to A as commonly used in predicate logic. The companion
predicates, there_exists (3) and for_all (V) are also available and programmers can express a
desired scheduling policy in whichever predicate feels the most natural for the task. All these
predicates can be thought of as syntactic sugar for a more fundamental function, count, which
returns an integer indicating how many invocations satisfy count’s condition. The following

equality holds:
there_is_no(p in waiting(Op) : condition) = count(p waiting(Op) : condition) = 0

A more in-depth discussion of these other scheduling predicates can be found elsewhere

[MWBD91].

1.3.3.2 Relationship to Synchronisation Counters

SP supports the two “verbs” waiting and ezecuting. The relationship between these “verbs”

and the corresponding synchronisation counters can be expressed as follows:

wait(Op) = count(p waiting(Op) : true)
exec(Op) = count(p executing(Op) : true)

If the other verbs arrived, started and terminated were supported® then these would also be

related to their corresponding counters as follows:

arrival(Op) = count(p arrived(Op) : true)
start(Op) = count(p started(Op) : true)
term(Op) = count(p terminated(Op) : true)

Thus we see that both synchronisation counters and scheduling predicates can be considered

to be a form of syntactic sugar for the count function.

1.4 Path Expressions

Path Expressions [CH73] use a notation based on regular expressions to specify synchronisa-

tion constraints on operations. They take the form:
path reg expr end

A path expression loops to repeatedly process the regular expression. Within reg expr, opera-

(A9

) denotes a choice and a semicolon (“;”) denotes

tion names denote themselves, a comma (
a sequence. Also, mutual exclusion is the default in path expressions. Thus for example, the
following path expression states that either operation A or B can execute (but not both at

the same time):

It would be infeasible for an implementation of SP to support the arrived, started and terminated verbs
since this would require maintaining details of invocations indefinitely and the amount of information to be

maintained would grow indefinitely large.
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path A , B end

Braces (“{...}”) remove the mutual exclusion constraint from whatever lies inside them. For
example, the following path expression specifies that at any one time there can be either

multiple executions of operation A or a single execution of operation B:
path { A}, B end

If A is a read-style operation and B is a write-style operation then it is clear that the above
path expression implements the basic readers/writer policy.

The basic Path Expressions mechanism has spawned a number of variations including
Open Path Expressions [CK80] and Predicate Path Expressions [And79].

1.5 Eiffel|

In the Eiffel|| language [Car93], objects are either process or passive.

Passive objects are local to the process object in which they were created.

Process objects have their own thread which both schedules pending invocations and
services them. There is no concurrency within a process object. However, there is concurrency
between objects since multiple process objects can execute concurrently with respect to each
other.

A process object is an instance of a class that inherits from the standard Eiffel|| class
PROCESS. This class provides an operation, Live, that is executed when an object is created.
Live enters an infinite loop in which it chooses a pending invocation to be serviced and
services it on behalf of the client. The actual policy implemented by operation Live in class
PROCESS is first-come, first-served. However, subclasses can re-implement Live in order to

use a different scheduling policy.

class BoundedBuffer inherits PROCESS {

Put(...) {... }

Get(...){... }

Live()

{ while true do
if “the buffer is not full” then serve_oldest(Put); endif
if “the buffer is not empty” then serve_oldest(Get); endif
wait_for_an_invocation();

end

Figure 1.7: An Eiffel||-style bounded buffer

As well as providing Live, the PROCESS class also provides some operations to help

manage the list of pending invocations. For example, the operation serve_oldest(Foo) will
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search for any pending invocations of operation Foo and service the oldest one it finds. If
there are no pending invocations for Foo then it returns straight away rather than block until
a Foo invocation arrives.

The bounded buffer class in Figure 1.7 inherits from PROCESS and re-implements the
Live operation to use a policy suitable for its needs. This shows the serve_oldest operation
in use. The code also utilises another operation, wait_for_an_invocation, in order to avoid

“busy-waiting” if there are no pending invocations.

1.6 Enabled-sets

Kafura and Lee [KL89] introduced the concept of behaviour abstraction. Tomlinson and Singh
[TS89] enhanced this concept and renamed it Enabled-sets. The basic concept, by whatever
name, has since been incorporated into numerous synchronisation mechanisms.

With Enabled-sets, a class specifies all the synchronisation states in which it is possible
for an instance of that class to find itself. For example, at various times a bounded buffer
might be in any one of the following states: empty, partial (i.e., partially full) or full. Each
of these states enables a particular set of operations to execute. For example, when in the
partial state, both Pul and Gel can execute. Similarly, the emply state enables only Put to
execute (since one cannot Get from an empty buffer) and the full state enables only Get to
execute (since one cannot Put any more items into an already full buffer). Thus the complete
set of states for a bounded buffer, and the operations enabled in each of these states, might

be expressed as follows:

state empty enables {Put}
state full enables {Get}
state partial enables {Put, Get}

Alternatively, the set of operations for the partial state could be expressed in terms of the

sets associated with the emply and full states, using the following notation:
state partial enables empty.ops + full.ops

Within the body of an operation, a become statement is used to specify which state the
object should enter next (and hence which operations are permitted to execute). For example,
the statement “become full” indicates that a bounded buffer object is in the full state and
that only the Get operation can execute. An example of a bounded buffer class implemented
with Enabled-sets is shown in Figure 1.8.

The main purpose of Enabled-sets is that if a subclass introduces a new operation then
this operation could be added to (some of ) the sets associated with the synchronisation states
inherited from the parent class. In this way, it was hoped, Enabled-sets would permit the
synchronisation code of a base class to adapt to the needs of subclasses and hence tackle the

“inheritance anomaly” (which will be discussed in the next chapter).
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class BoundedBuffer inherits PROCESS {
state empty enables {Put};
state full enables {Get};
state partial enables {Put, Get};
BoundedBuffer(. . .) // constructor

{...

become empty;
}
Put(...)
{ “add item to end of buffer”;
if “buffer is full” then become full; else become partial; endif
}
Get(...)
{ result := “remove item from start of buffer”;
if “buffer is empty” then become empty; else become partial; endif

return result;

Figure 1.8: A bounded buffer written with the aid of Enabled-sets

1.7 Structure of this Thesis

This thesis is divided into five parts. Part I (which you are currently reading) and Part V
are the introduction and conclusions, respectively. The middle three parts contain the con-
tributions of this thesis.

o Part II presents a paradigm for developing powerful synchronisation mechanisms.

o Part III shows how it is possible to provide comprehensive language support for generic

synchronisation policies.

e Part IV analyses the problems regarding the use of inheritance in COOPLs.

Details of the structure of each part of the thesis can be found at the start of the relevant

parts.
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Chapter 2

Aims of this Thesis

This thesis makes contributions in several areas: (i) expressive power of synchronisation
mechanisms; (i) the problem of synchronisation mechanisms having unsafe access to instance
variables; (iii) language support for generic synchronisation policies; and (iv) problems with
the use of inheritance in COOPLs.

For each of these areas, which are discussed in Sections 2.1 through to Section 2.4, we
discuss the key issues of the area and then state the contributions that this thesis makes in

addressing these issues.

2.1 Expressive Power

Hoare [Hoa74] shows that Semaphores and Monitors can be implemented in terms of one
another. A great many other synchronisation mechanisms can also implement Semaphores,
and can in turn be implemented by Semaphores. This means that, at a theoretical level,
all these synchronisation mechanisms have equal power since each is equivalent in power to
Semaphores.

However, at a practical level, one synchronisation mechanism might be able to implement
a particular synchronisation policy (or range of policies) more easily than another synchro-
nisation mechanism. The term “expressive power” refers to the ability of a synchronisation
mechanism to easily implement a range of synchronisation policies: the wider the range of
synchronisation policies a mechanism can easily implement, the greater its expressive power
is said to be.

It is common for the designers of a synchronisation mechanism to illustrate its expressive
power by implementing several well-known synchronisation policies. Unfortunately, this does
not provide an objective criteria for gauging expressive power since the synchronisation poli-
cies commonly used are usually chosen because they happen to be well-known rather than
because of any principles they might embody.

Bloom [Blo79] proposes an alternative to this. She lists six types of information that

a synchronisation mechanism should have access to in order for it to have good expressive

14



power. The six types of information are as follows:

1. The name of the invoked operation.
The relative arrival time of invocations.

Invocation parameters.

L

The “synchronisation state” of the resource, i.e., information about how many processes

are currently accessing the object.
5. The local state of the object, i.e., instance variables.

6. History information; this is similar to the “synchronisation state,” except that it refers
to operation invocations that have already terminated. Bloom notes that since past in-
vocations will likely have affected instance variables, the “history information” category

is often interchangeable with the “instance variables” category.

It is relatively easy to determine the types of information to which a particular synchro-
nisation mechanism has access. For example, a synchronisation mechanism that permits

synchronisation counters to be used in guards would have access to:

1. The name of the invoked operation—each operation has its own guard and set of syn-

chronisation counters associated with it.

4. The “synchronisation state” of the resource—the exec and wait counters provide this

information.

6. Some history information—this is provided by the term counter.

If this analysis is carried out for several synchronisation mechanisms then it allows these
mechanisms to be compared with each other.

For example, a synchronisation mechanism, z, might have access to information types 1,
2, 4 and 6, while another synchronisation mechanism, y, might have access to information
types 1, 2 and 4. In this case, it is clear that mechanism z has more expressive power than y.
If instead y had access to information types 1, 3, 5 and 6 then z and y would have different
kinds of expressive power, with neither one being clearly superior to the other. Obviously,
it is desirable for a synchronisation mechanism to have a high degree of expressive power.
However, expressive power often comes at a price, as we will discuss in Sections 2.1.1 to 2.1.4.
Then in Section 2.1.5 we will state the contributions that this thesis makes in the area of
expressive power.

Note that Bloom’s list can be used not only to evaluate the expressive power of a synchro-
nisation mechanism but also to evaluate the type of expressive power required to implement
a particular synchronisation policy. For example, to implement a bounded buffer requires

access to the following types of information:

1. The name of the invoked operation—since Put and Get have different synchronisation

constraints.
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4. The “synchronisation state of the object”—since some form of mutual exclusion will be

required.

5/6. Whether the buffer is empty, full or in between could be recorded by either an instance
variable (information type 5) or a synchronisation variable recording this “history in-

formation” (information type 6).

One could apply a similar analysis to a number of synchronisation policies and then choose a
subset of these such that, between them, they exercise each of Bloom’s six types of informa-
tion. This could be used as a more objective test suite for evaluating the expressive power of

synchronisation mechanisms than an ad hoc collection of well-known synchronisation policies.

2.1.1 Creeping Featurism and Complexity

As already shown, a guard-based mechanism employing synchronisation counters has access
to three out of Bloom’s six types of information.

In order to increase the expressive power of such a mechanism, a language designer might
add other constructs. Perhaps the guards will be allowed to access instance variables along
with synchronisation counters. Also, a fefs keyword might be added to specify that pending
invocations are to be serviced by their relative arrival times. Finally, another construct might
be added that permits scheduling based on the value of a parameter.

The resulting synchronisation mechanism has access to all six of Bloom’s types of infor-
mation so it obviously has greater expressive power than the original mechanism. However,
it is also a great deal more complex since there are now four constructs that can be used in
guards in contrast to the original mechanism’s one.

Aside from burdening programmers with new features to learn, these new constructs may

introduce problems to the language. For instance:

o If a guard is reading an instance variable while that variable is being updated by an
operation then the guard might see it in an inconsistent state. (See Section 2.2 for an

extensive discussion about this problem.)

e It may not be possible to use certain combinations of constructs. For instance, it may
not be possible to combine scheduling based on parameters with the fcfs construct, thus
hindering the implementation of a policy such as, say, a Shortest Job Next Scheduler
with FCFS sub-ordering.

Also, with so many constructs, each added to cope with a specific problem, some constructs
might be too specific and lack flexibility, thus not providing as much expressive power as
they might have done. For example, the construct for scheduling might be able to schedule
invocations for one, but not several, operations. Also, since scheduling based on parameters
is similar to scheduling based on relative arrival times perhaps a single construct would have

served both purposes (as it does in SP).
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Thus, unless the new constructs are carefully chosen so that they are as general-purpose
as possible and integrate well both with each other and with existing language constructs,
the language may end up being overly complex, idiosyncratic and lacking in expressive power
despite having access to all six of Bloom’s types of information.

An example of this ineffective creeping featurism is provided by the evolution of the
synchronisation mechanism in the Guide language. As discussed in the previous chapter, an
early language definition [DDR*91] permitted guards to access: (i) synchronisation counters,
(ii) parameters, and (iii) instance variables. More recent papers [RR92, Riv92] propose four
extensions to Guide’s guard-based mechanism, plus a completely different synchronisation
mechanism (similar to Path Expressions) to be used in types, the expressive power of which
is less than that already provided by guards in classes (which implement types).

Another example is provided by DRAGOON. The synchronisation mechanism described in
Atkinson’s thesis [Atk90] permits guards to access just synchronisation counters and instance
variables. A more recent paper [ACR92| outlines five different proposed extensions to the

basic mechanism.

2.1.2 Graceful Degradation of Expressive Power

We do not know of any synchronisation mechanism that has infinite expressive power, i.e.,
that can implement all possible synchronisation policies easily. So, since every synchronisation
mechanism has finile expressive power, it stands to reason that for any given mechanism there
may be a policy, P, that is just within its expressive power and a similar, though slightly
more complex policy, P, that is beyond its expressive power. This prompts the question:
will the difficulty of implementing P’ be proportional to how far it is beyond the expressive
power of the synchronisation mechanism? Or will there be a sudden jump in difficulty? If the
former is the case then this suggests that the implementation of P’ will bear some similarity
to the implementation of P, while the latter suggests that there will be little, if any, similarity
between the two implementations.

A classic example of this sudden jump in the difficulty level of implementing related
synchronisation policies is provided by the Path Expressions implementation of various read-
ers/writer policies [CH73, pg. 93-94]. While the basic readers/writer policy can be expressed
easily via a single path expression, other variations require multiple path expressions and the
introduction of what Bloom [Blo79, pg. 28] calls “synchronisation procedures.”

Another example is provided in the Guide implementation of various readers/writer poli-
cies [DDR*91]. While guards are able to elegantly express several variations—basic read-
ers/writer, readers priority and writers priority—the implementation of a FCFS variant re-
quires that guards be combined with, what are in effect, synchronisation procedures, and
the resulting code bears little resemblance to the code used for, say, the basic readers/writer
policy.

As a final example, consider Scheduling Predicates which can implement the Shortest Job

Next scheduler easily [MWBD91]. This policy is unfair since it is possible for a long job to be
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skipped over indefinitely by a continuous stream of shorter jobs. One way to remedy this is to
decrement the “length” of a job whenever it is skipped over by a shorter job, thus decreasing
the likelihood of it being skipped over again. However, Scheduling Predicates does not have
the expressive power to directly implement this starvation-free version of the Shortest Job
Next scheduler and programmers would have to resort to explicitly maintaining their own

queues of pending jobs.

2.1.3 Declarative Vs. Procedural Mechanisms

Many synchronisation mechanisms (including Path Expressions and guard-based mecha-
nisms) are declarative in nature. By this we mean that programmers can use the mechanism
simply to specify the synchronisation policy desired. They need not worry about implemen-
tation details because, ideally, the implementation will be derived automatically from the
specification.

However, while declarative mechanisms can often give elegant, concise solutions to some
synchronisation problems, they generally have limited expressive power because they cannot
express algorithms. Furthermore, this inability to express algorithms usually means that
declarative mechanisms do not “degrade gracefully” when faced with a synchronisation policy
that is beyond their expressive power. Rather, they generally need to utilise synchronisation
procedures to implement policies beyond their expressive power; this usually results in an
abrupt increase in difficulty of use. An intuitive, graphical representation of this is shown in

Figure 2.1.
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Figure 2.1: Graphical comparison of declarative and procedural synchronisation mechanisms

In contrast to declarative mechanisms, some mechanisms are procedural. These combine

synchronisation primitives with sequential flow control constructs and data structures, al-
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lowing programmers to implement synchronisation policies through algorithms. Examples
of procedural mechanisms include Eiffel|| (introduced in Section 1.5 on page 11), and Moni-
tors [Hoa74]. The synchronisation primitives provided are usually at a low-level which often
results in verbose and intricate implementations of synchronisation policies. So, from this
point of view one might argue that they do not have good expressive power. However, as Fig-
ure 2.1 shows, in being able to utilise algorithms, procedural mechanisms generally degrade
more gracefully than declarative mechanisms and often complex scheduling policies are not

much more difficult to implement than simpler ones.

2.1.4 Modularity

The sequential code and synchronisation code of a class serve different purposes: the former
implements the services (operations) of the class while the latter ensures data consistency
in the face of concurrent access (and possibly also imposes a scheduling order upon pending
invocations). Because they serve different purposes, the synchronisation code and sequential
code of a class should be separated from one another [Blo79, pg. 25].

Some synchronisation mechanisms keep synchronisation code separated from sequential
code, by default, and thus obtain modularity. However, if a synchronisation mechanism has
limited expressive power then programmers may resort to mixing synchronisation code with
sequential code in an effort to implement policies beyond the mechanism’s native expressive
power. An example of this mixing of synchronisation code with sequential code is the “syn-
chronisation procedures” of Path Expressions, which we briefly mentioned in Section 2.1.2.

While some synchronisation mechanisms provide modularity by default and only violate it
in order to implement complex synchronisation policies, some other mechanisms routinely mix
synchronisation code with sequential code. An example of this is Enabled-sets (introduced
in Section 1.6 on page 12) in which the transition from the current synchronisation state to

the next is achieved by code embedded inside the sequential code of operations.

2.1.5 Contributions

Part II of this thesis defines a new paradigm, Sos, for synchronisation mechanisms and
it is this paradigm that makes several contributions in the area of expressive power. The
contributions it makes are as follows.

The Sos paradigm shows that all of Bloom’s six types of information are derived from
a single source of information. Thus, a synchronisation mechanism that has access to this
primary source of information can have similar expressive power to another synchronisation
mechanism that has access to Bloom’s six derivative types of information. A benefit of
this finding is that fewer constructs are likely to be needed in order to access the single,
primary source of information than the multiple derivative sources of information; hence, a
synchronisation mechanism can have good expressive power without undue complexity or

creeping featurism.
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The Sos paradigm also fully separates synchronisation code from sequential code, thus
ensuring that modularity does not have to be sacrificed for good expressive power.

Part II of this thesis also introduces a sample synchronisation mechanism, EsPp, to illus-
trate the concepts of SOos. Through Esp, we verify the claimed benefits of the Sos paradigm,
i.e., it offers good expressive power without sacrificing modularity. An additional benefit that
Esp offers is that it merges declarative and procedural programming styles and, in so doing,

degrades gracefully when used to implement more complex synchronisation policies.

2.2 Unsafe Access to Instance Variables

Consider an object that can be accessed concurrently by several processes. Some mechanism
must be used to protect the object in the face of concurrent access—otherwise its data might
become inconsistent. Encapsulation requires that the code to protect an object should be
placed within the object itself rather than be spread out among its clients [Blo79]. We refer
to this code as synchronisation code.

It is believed that access to the instance variables of an object by its synchronisation code
is needed in order to implement many synchronisation policies [Blo79]. This introduces an
obvious difficulty. The synchronisation code must not read an instance variable while that
variable is being updated by an operation, otherwise the synchronisation code might see the
variable in an inconsistent state.

Surprisingly, many languages and systems (e.g., Guide [DDR*91], Prooc [Tho92], Dooji
[Tho94], CEiffel [L6h93], VCP [GC92], Conditional Path Expressions [GW9I1], SR [And81],
Dale [Cou94] Demeter [LL94] Composition Filters [Ber94] and DracoonN [Atk90]) allow
synchronisation code to access instance variables but do not provide any means to ensure
that this access is performed in a safe manner.

In Sections 2.2.1 and 2.2.2 we review some existing approaches to allowing instance vari-
ables to be accessed safely by synchronisation code. (In these sections, synchronisation code is
represented in the form of guards; however, the principles discussed apply to non guard-based
mechanisms too.) Then in Section 2.2.3 we state the contribution that this thesis makes in

the area of instance variables being accessed unsafely by synchronisation code.

2.2.1 Reduction of Concurrency

Consider an instance variable, V, which is read by some guards. Let G be the set of guards
which read V, and O be the set of operations which update V. One way to guarantee that the
guards in the set G will always evaluate to a consistent value, even while V is being updated,
is to ensure that the condition “ezec(() = 07 is a conjunctive of each guard in G.

Of course, since operations in the set O all update V, (’s guards will normally contain
the conjunctive “ezec(Q) = 0”7 (to prevent multiple writers concurrently updating V). If this

is so and if G is a (not necessarily strict) subset of O then it follows that the guards in set
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G will already contain the required conjunctive. In this case, the problem is solved without
any intervention by the programmer.
Consider the bounded buffer code in Figure 2.2. For V = num, we note the following:
G = {Put, Get}
O = {Put, Get}

Since G = O (and thus G is a subset of ), the problem is solved naturally.

class Buffer[elem, Size] {
int  get_index, num; elem data[Size];

Buffer() { get_index := 0; num := 0; } // initialisation

Put(...) { ... “update num”; ... }
Get(...) { ... “update get_index & num”; ... }
synchronisation

Put: ezec(Put, Get) = 0 and num < Size;
Get: exec(Put, Get) = 0 and num > 0;

}

Figure 2.2: The Bounded Buffer

However, one cannot rely on the problem always being solved naturally, as the following

illustrates.

Dynamic Priority Print Queue

This problem is an example where G is not a subset of O, and extra conjunctives must be

added to guards to ensure their consistent evaluation. The problem description is as follows:

At a college, a printer is accessed by undergraduate students from first to fourth
year, graduate students and members of staff. The printer queue is priority based
(each group has its own priority) and there is FCFS ordering within a priority

level. From time to time, the system manager may change the group priorities.

An attempt at implementing this is given in Figure 2.3. The error in this code becomes
apparent if we consider the guard of a Print invocation evaluating while UpdatePriority is
executing: because the variable priority[] is being updated it is potentially in an inconsistent
state which could result in the guard being incorrectly evaluated.

For V = priority[], we note the following:

G = {Print}
O = {UpdatePriority}

As discussed earlier, to fix this we must make “ezec(Q) = 0” a conjunctive of G. The resultant
guard for G (i.e., Print) is then:

Print: ezec(Print, UpdatePriority) = 0 and there_is_no(...)
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type Groupld = (one, two, three, four, grad, staff);

class Printer {
int priority[Groupld];
Printer() { “initialise priority[] to appropriate values”; }
UpdatePriority(Groupld gid, int NewPriority) { priority[gid] := NewPriority; }
Print(Groupld gid, string FileName) { ... }
synchronisation
UpdatePriority: ezec(UpdatePriority) = 0;
Print: ezec(Print) = 0 and there_is_no(p in waiting(Print):
priority[p.gid] > priority[this_inv.gid] or
priority[p.gid] = priority[this_inv.gid] and p.arr_time < this_inv.arr_time);

Figure 2.3: An attempt at the Dynamic Priority Print Queue problem

2.2.1.1 Discussion

This approach has the advantage that it does not require any changes to existing languages

or synchronisation mechanisms. However, it has two disadvantages:

1. Tt solves the problem by reducing the potential for concurrency within an object.

2. Adding conjunctives to guards to ensure that they may safely access instance variables
is error prone and tedious, and programmers may forget to check the guards whenever

a modification is made to the source code of the class.

2.2.2 The Guide Proposal

For some time, Guide [DDR*91] allowed instance variables to appear in guards and ignored
the problems which this raised. However, a more recent paper [Riv92] proposes a way to
allow instance variables to be used safely in synchronisation guards (a similar scheme has

also been proposed for Dale [Cou94, pg. 193]). This is achieved in the following manner:

1. A lock is used to ensure that the evaluation of synchronisation guards and the updating

of synchronisation counters takes place atomically. Let us call this lock “lock,,,.”.

2. If a variable, V, is used in a guard then an assignment to V is replaced with the following

code:

tmp := right-hand-side of the assignment;
acquire lock,y,.;

VY := tmp;

re-evaluate guards which rely on V;

release lockgy,.;
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We shall use some examples to show that this technique is inadequate. For consistency,
the examples will be presented in the syntax used throughout this thesis rather than in the

syntax of Guide.

Dynamic Priority Print Queue

Consider the attempt at the dynamic priority printer shown previously in Figure 2.3. When
we originally discussed this in Section 2.2.1, we showed the error caused by the possibility of
priority[] being updated while the guard for Print was being evaluated. Under the semantics
of the Guide proposal, this error disappears without the programmer having to alter the
guards.

However, consider what would happen if the UpdatePriorily operation was rewritten so

that it modified the priority of all the groups rather than just a single one, as shown below:

UpdatePriority(int NewPriority[Groupld])
var Groupld index;
{
for index in one..staff do
priority[index] := NewPriority[index];
end

}

If the code generated by the compiler acquires and releases lock,,,. inside the body of the
for loop then the bug reappears since the priority[] array, as a whole, will not be consistent
while guards are being evaluated. To ensure consistency of the array, the compiler would
have to generate code which would place the acquisition and release of lock,,,. around the
entire for loop.

The compiler writer might be able to take into account this interaction of for loops and
the usage of lock,,,,., but, unfortunately, the problem is more general than that. The compiler
would have to be able to generate code so that the acquisition and release of lock,,,. would
surround any arbitrary sequence of statements which updated an equally arbitrary set of
variables, since the synchronisation code might rely on the set of variables as a whole being
consistent.

The dynamic priority print queue is not an isolated example for which the Guide proposal

proves insufficient, as the next example shows.

Dining Philosophers

This well-known problem concerns a table with five seats and five chopsticks—one at each
seat position. Because two chopsticks are required for eating, philosophers use the chopstick
at their own seat and also the chopstick at the seat to their right. Neighbouring philosophers

cannot simultaneously share the chopstick which is common to them. In simulating the action
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type TablePositon is int subrange(0..4);
class DiningPhilTable {
boolean  chopstick_avail[TablePosition];
DiningPhilTable() // constructor
{ “set all chopstick_avail[] to true”; }
Eat(TablePosition pos)
{ chopstick_avail[pos] := false;
chopstick_avail[(pos+1) mod 5] := false;
// “real” Eat code here
chopstick_avail[pos] := true;
chopstick_avail[(pos+1) mod 5] := true;
}
synchronisation

Eat: chopstick_avail[this_inv.pos] and chopstick_avail[( this_inv.pos+1) mod 5];

}

Figure 2.4: First attempt at Guide solution to the Dining Philosophers problem

at the table, one must ensure against deadlock as might happen if, say, all five philosophers
picked up their own chopsticks simultaneously, only to discover that the chopstick to their
right was already held by their neighbour.

Figure 2.4 shows a first attempt at solving this. The guard on Fal reflects the problem
description and is quite intuitive. However, this solution is flawed because, when an invo-
cation starts executing Fat, there is no guarantee that it will update the status of its two
chopsticks before another invocation arrives and evaluates its own guard. If this latter invo-
cation is for a neighbouring seat of the first invocation then the two invocations will attempt
to simultaneously share chopsticks—which is forbidden by the problem description.

To fix this flaw, we factorize any code which updates chopstick_avail[] out of Fat and
into the new operations PickUp and PutDown. The resultant code is shown in Figure 2.5.
However, this solution works, not because it makes use of Guide’s proposed semantics, but
rather because it falls back to using the technique discussed in Section 2.2.1. You can see

this by noting that, for V = chopstick_avail[], we have:

G = {PickUp, PutDown}
O = {PickUp, PutDown}

2.2.2.1 Discussion

From these examples we can see that Guide’s new proposal offers only a partial solution to
the problem. If a single instance variable is used in the guards then Guide’s proposal may
help. However, it fails if more than one instance variable (or if a compound variable, such as

an array or record) is used in the synchronisation code. In this case, the programmer must
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type TablePositon is int subrange(0..4);
class DiningPhilTable {
boolean  chopstick_avail[TablePosition];
DiningPhilTable() // constructor
{ “set all chopstick_avail[] to true”; }
Eat(TablePosition pos)
{ PickUp(pos, (pos + 1) mod 5);
// real “eat” code here
PutDown(pos, (pos + 1) mod 5);
}
PickUp(TablePosition i, TablePosition j)
{ chopstick_avail[i] := false;
chopstick_avail[j] := false;
}
PutDown(TablePosition i, TablePosition j)
{ chopstick_avail[i] := true;
chopstick_avail[j] := true;
}
synchronisation
PickUp: ezec(PickUp, PutDown) = 0 and chopstick_avail[this_inv.i]
and chopstick_avail[this_inv.j];
PutDown: ezec(PickUp, PutDown) = 0;
// no guard needed for “Eat”

Figure 2.5: Guide solution to the Dining Philosophers problem

revert to the technique discussed in Section 2.2.1, i.e., reduce the potential for concurrency

within objects.

2.2.3 Contribution

As we have said before, it is commonly believed that synchronisation code needs to access
the instance variables of an object in order to implement many synchronisation policies.
Through the Sos paradigm, introduced in Part II of this thesis, we will show that this belief
is incorrect. In particular, we will show that a synchronisation mechanism can maintain
its own variables and in doing so can implement synchronisation policies without having to

access instance variables.
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2.3 Generic Synchronisation Policies

Language support for generic data types is becoming more and more common, especially in

object-oriented languages. Thus, you might see data types such as:

type List[T:Any']
type Set[T:Comparable]

In general, generic data types take one or more formal parameters that serve as place-holders
when instantiating the generic type upon an actual type. For instance, one might declare a

variable of type “list of employees” as follows:
var a: List[Employee]

Generic data types promote code reuse since a particular data type need be written only once
and then can be instantiated (reused) many times.

Some synchronisation policies such as mutual exclusion and readers/writer are quite com-
mon and are used in a number of different classes. This suggests the possibility of providing
language support for generic synchronisation policies (GSPs) so that commonly used policies
need be written only once.

For example, a mutual exclusion synchronisation policy might be expressed as:
policy Mutex[ Ops: Set[Operation] ]

In this example the formal parameter, Ops, represents a set of operations. Thus, given a set

of operations, “{A, B, C}”, the policy might be instantiated as follows:
Mutex[ {A, B, C} |

Notice that this policy is instantiated upon the set value “{A, B, C}”. This is in contrast to
the examples of generic data types given earlier which were instantiated upon types.

As another example, a readers/writer policy might be expressed as:
policy ReadersWriter[ ReadOps: Set[Operation], WriteOps: Set[Operation] |

To express some other synchronisation policies one might extend the range of parameters
upon which it is possible to instantiate a policy. For example, a bounded buffer synchroni-
sation policy might be expressed in terms of a set of put-style operations, a set of get-style

operations and the Size of the buffer (an integer):
policy BBuf] PutOps: Set[Operation], GetOps: Set[Operation], Size: Int ]

Similarly, one might extend the notation in order to be able to instantiate a synchronisation
policy on parameters of operations. For example, a Shortest Job Next scheduler might be
denoted by:

'In some object-oriented languages, Any is the base class from which all other classes are derived, and a

class called, say, Comparable provides an operation that can be used to compare two objects for equality.
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policy SJN[ Ops: Set[Operation|, Length: Parameter |

The possibility of providing language support for generic synchronisation policies raises

a number of issues, including:

o How many different types of formal parameter are needed to support generic synchro-
nisation policies? The examples given so far suggest a minimum requirement of being
able to instantiate generic synchronisation policies upon sets of operations, parameters

and integer constants.

e Generic synchronisation policies will be written outside the context of any particular
sequential class. However, many existing synchronisation mechanisms permit synchro-
nisation code to be mixed with sequential code in an effort to gain more expressive
power. This raises the question of whether an enforced separation of synchronisation
code from sequential code will limit the range of generic synchronisation policies that

can be implemented.

e Is it possible to have inheritance hierarchies for generic synchronisation policies? For
example, perhaps Readers Writer could be a base policy and from which other policies,

e.g., ReadersPriorily, inherit.

Some existing languages attempt to provide support for generic synchronisation policies. For
example, the behavioural classes of DRAGOON (introduced in Section 1.3.2 on page 7) are,
in effect, generic synchronisation policies. However, the support provided in DRAGOON has

some limitations, including;:

e DRAGOON uses a form of inheritance to instantiate a behavioural class, and thus con-
fuses genericity with inheritance. As we will discuss later in Section 10.1.1, this con-
fusion can lead to name-space pollution of classes and inconsistencies in the typing

system.

e Behavioural classes have access to the instance variables of a class, albeit indirectly via
functions. Hence, generic synchronisation policies in DRAGOON cannot be written in a

manner that is completely independent of sequential code.

e Due to constrained expressive power, behavioural classes can implement only a limited

range of synchronisation policies.

Some other existing languages, e.g., Demeter [LL94], Hector [BFS93] and Parallel Objects
[CL91], also provide support for generic synchronisation policies. However, the support in
these languages is also of a limited nature.

While it may seem difficult to provide language support for generic synchronisation poli-
cies, there are several important benefits to be gained from providing such support. We
already mentioned one benefit: code reuse.

Another benefit is that with proper language support it should be trivially easy to instan-
tiate a policy. This introduces the possibility of having skilled programmers write libraries

of generic synchronisation policies that can be used by less skilled programmers.
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A related benefit is that the instantiation of a generic synchronisation policy is extremely
declarative, irrespective of how the policy is actually implemented. Thus, the utility of a
low-level, procedural synchronisation mechanism could be enhanced by encapsulating diffi-
cult to understand synchronisation code as generic policies which are declarative in their

instantiation.

2.3.1 Contributions

Part III of this thesis is devoted to the area of generic synchronisation policies. It makes
several contributions.

The issues surrounding language support for generic synchronisation policies are examined
and we show that it is possible to provide comprehensive support in a straight-forward manner
that does not limit the range of synchronisation policies that can be expressed.

We also show that GSPs facilitate the optimisation of synchronisation code.

2.4 Analysis of the Problems with Inheritance in COOPLs

It is well-known that there are problems with the use of inheritance in COOPLs that can
hinder code reuse [TS89] [KL89] [Mat93] [Ber94]. These problems are commonly referred to
in the literature as “inheritance anomalies.”

This section gives an intuitive explanation of a subset of the problems (a more detailed
analysis can be found in Part IV of this thesis). Then in Section 2.4.1 we state the contribu-
tions that this thesis makes in this area. Note that this section uses generic synchronisation
policies as a means to to discuss a particular policy, e.g, ReadersWriter, independently of
how it might be implemented or even what synchronisation mechanism might be used to
implement it. In this way, we can discuss the problems with inheritance in a way that is
independent of any particular synchronisation mechanism.

Consider a base class that contain three operations, A, B and C. If A and B examine
instance variables and C updates them then a suitable synchronisation policy for this class

would be:
ReadersWriter[ {A, B}, {C} ]

If a subclass re-implemented operation B and in doing so turned it into a write-style operation?
then the subclass would have to change the synchronisation policy in order to accommodate

this change. For example, the synchronisation code might be changed to:

2Some readers may think that for a subclass to re-implement an inherited read-style operation as a write-
style operation would mean that the subclass is not a subtype of its parent. This issue is irrelevant to
the present discussion since we are concerned with inheritance as a means of code reuse rather than as a
subtyping mechanism. However, we note that it ¢s possible for a subclass to re-implement an inherited read-
style operation as a write-style operation and still be regarded as a subtype of its parent. For example, the
instance variables updated by the re-implemented operation need not be inherited ones but rather instance

variables declared new to the subclass.
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ReadersWriter[ {A}, {B, C} ]

As another example, consider what might happen if, instead of re-implementing operation
B, the subclass introduced a new write-style operation, D. Once again, the synchronisation
code would have to be changed in order to accommodate this change in the sequential code.

The new synchronisation code might be:
ReadersWriter[ {A, B}, {C, D} ]

Both of these examples illustrate aspects of the problems with inheritance in COOPLs.
In effect, if a subclass changes its sequential code then this may invalidate, and necessitate
changes to, its inherited synchronisation code. The converse can also happen. If a subclass
makes changes to the inherited synchronisation code, e.g., in order to permit more internal
concurrency, then this might necessitate changes to the inherited sequential code. Thus,
while inheritance can be a good tool for reusing code in a sequential language, it does not
always work so well in concurrent languages.

The above explanation of the problems with inheritance in COOPLs is somewhat simpli-
fied but it suffices as an introductory explanation. The ramifications of these problems can
be severe, to the point of preventing programmers from being able to reuse any inherited
code.

To understand why this is so, consider that not all languages keep synchronisation code
and sequential code separate from one another. In some languages, synchronisation code
is embedded inside the bodies of sequential operations. In such languages, sometimes the
only way to change the synchronisation code of a class might be to re-implement one or more
operations. This, of course, will result in the sequential code of the affected operations having
to be re-implemented along with the synchronisation code. This might create a feedback loop:
a change to the sequential code of a class necessitates a change in the inherited synchronisation
code of the class which in turn necessitates a re-implementation of some of the inherited
sequential operations. In some cases, this feedback loop may make it impossible to reuse any

inherited code.

2.4.1 Contributions

In Part IV of this thesis, we analyse the problems associated with using inheritance in
COOPLs and make the following contributions.

A common perception is that the problems are rooted in a conflict between synchroni-
sation and inheritance, which suggests that the problems might be solved by designing new
synchronisation mechanisms that do not conflict with inheritance. We show that this per-
ception is incorrect and that the problems are, in fact, intrinsic to inheritance. This has two
ramifications.

Firstly, the problems are more serious than previously thought since they are not confined

to the specialised area of synchronisation but are at the heart of object-orientation. Hence,
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they may show up in other areas. For example, similar problems have been noted in the area
of real-time constraints [ABvdSB94].

Secondly, since the problems are intrinsic to inheritance rather than synchronisation,
it follows that approaches to tackling the problems need to be focussed on, say, designing
new inheritance models or alternative ways to reuse code, rather than on designing new
synchronisation mechanisms.

Towards the aim of considering alternative reuse mechanisms, we show that the use of
generic synchronisation policies can drastically reduce, though not entirely eliminate, the

harmful effects of the problems with inheritance.
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Part 11

The Sos Paradigm: Power through
Simplicity
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Introduction to Part 11

Part II presents Sos: a paradigm for the design of synchronisation mechanisms.

The concepts of the paradigm itsell are presented in Chapter 3.

Then Chapter 4 introduces a sample synchronisation mechanism, Esp, which embodies
the concepts of the Sos paradigm. The examples in this chapter illustrate that Esp (and
hence the Sos paradigm) offers excellent expressive power while avoiding unsafe access to
instance variables.

Having introduced the concepts of the Esp synchronisation mechanism, Chapter 5 then
discusses the issues that arise when adding Esp to a host language. We show that many
of the concepts of Esp can be expressed in existing language constructs and that a Sos-
based synchronisation mechanism can be added to an existing language with a minimum of
difficulty.

Finally, Chapter 6 summarises the contributions that the Sos paradigm makes and com-

pares our work to that of other researchers.
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Chapter 3

The Service-object Synchronisation

(Sos) Paradigm

One of the main contributions of this thesis is a new paradigm for designing synchronisation
mechanisms for object-oriented languages. The paradigm consists of four concepts, each of
which is relatively ordinary and can be found in existing synchronisation mechanisms. What
is unusual about the paradigm is that it supports these concepts to a much stronger degree
than most existing synchronisation mechanisms. By providing extensive support for these
four concepts, the paradigm offers several important benefits.

This chapter introduces the paradigm and its core concepts. The benefits that the para-
digm offers will become apparent when the paradigm is put into practice—which is what
most of the rest of this thesis does. As such, readers will not have an appreciation of the
paradigm by the end of this chapter. That will follow later.

The paradigm presented here is called the Service-object Synchronisation (Sos) paradigm.

It consists of the following concepts:

1. Events (and code that is executed at them). (This is discussed in Section 3.1)
A way to cause a pending invocation to start executing. (This is discussed in Section 3.2)

Access to information about Invocations. (This is discussed in Section 3.3)

N

A strict separation between (i) the code and data used for the synchronisation of an
object, and (ii) the code and data of the object itself. (This is discussed in Section 3.4)

3.1 Events

The Sos paradigm provides synchronisation at the granularity of operation invocations, as
opposed to, say, the finer granularity of individual statements within operations or at the
coarser granularity of (collections of) objects. Perhaps a good way to introduce the Sos
paradigm is to start by modelling the lifespan of a typical operation invocation. The model

used is event-based.
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The diagram in Figure 3.1 shows the sequence of events that take place when one object

(the client object) invokes an operation upon another object (the service object).

client object service object

1 - arrival

.

1-call @— 2 - start

2 — return O\\\

3 —term

Figure 3.1: The events in the lifespan of a typical operation invocation

From the client object’s perspective, there are potentially two events of interest: call and
return. If the host language supports asynchronous calls then the client will be able to treat
these two events independently of one another. A common form of support for this is futures
[Hal85]. If the host language does not support asynchronous calls then the call and return
events will be syntactically merged and indistinguishable from one another.

From the service object’s perspective, there are potentially three events of interest: arrival,
start and term (short for termination). When an invocation arrives it may be delayed due
to synchronisation constraints. Sometime later it will start execution; and sometime later
still it will terminate execution. (In a sequential system the arrival and start events would
be merged.)

Note that in a distributed system the client and service objects may reside on different
nodes and hence there may be a time-lag between the client object making its call and the
invocation’s arrival at the service object. Even in a time-sliced, single-CPU machine there
may be a time-lag between the call and arrival events due to a context switch. For these
reasons the call event in the client object and the arrival event in the service object are not
synonymous. For similar reasons, the term event is not synonymous with the return event.

Some other points to note about this event-based model are as follows:

e In this model we assume that events do not overlap. For example, if two invocations
arrive at the same time then we assume that their arrival events will be ordered (perhaps

arbitrarily).

e In the Sos paradigm, all invocations upon a service object—including invocations made
by the service object on self—generate events. A justification of this point is deferred
until Section 3.6.1.

e In this thesis, the type of an event is often parameterised with the name of the operation
with which the event is associated. For example, arrival(Read) denotes an arrival event

for an operation named Read.
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3.1.1 Actions

In our event-based model, arbitrary code, referred to as actions, can be executed at events.

The following notation is used to indicate that an action is to be executed at an event:
event — action

For example:
start(Read) — foo := foo + 1;

This specifies that a variable, foo, is to be incremented whenever the event start(Read) occurs.
We have already said that events do not overlap. One natural consequence of this is that

the execution of an action completes before another event can occur.

3.2 Causing Invocations to Start Executing

The second, core concept of the paradigm is that a way exists to cause an invocation to
start executing, i.e., there is a mechanism to trigger the transition from arrival to start
of execution for an invocation. There are several common ways in which synchronisation

mechanisms provide this ability:

e One way is for the synchronisation mechanism to provide a statement whose purpose
is to initiate execution of the invocation. Examples include the “spawn” and “exec”
statements in Mediators [GCS86, pg. 470], and the “serve” operations in Eiffel|| [Car90a,
pg. 185].

e A variation of this occurs in synchronisation mechanisms that employ locking-type
primitives. In such mechanisms, releasing a lock causes an invocation waiting on that
lock to continue execution. Examples include condition variables in Monitors [Hoa74]

and delay queues in Hybrid [Nie87].
e A third way is to employ guards as in, say, SP [MWBD91]. The guard, associated with

an invocation, evaluating to true will trigger the start event for that invocation.

The Sos paradigm requires that some mechanism be provided to cause invocations to
start executing; however, the paradigm does not specify that a particular mechanism should

be used.

3.3 Access to Information about Invocations

In order to synchronise at the granularity of operation invocations, a synchronisation mech-
anism needs access to information about these invocations. Furthermore, the greater the
information about invocations that a synchronisation mechanism has access to, the more

complex the synchronisation policies it is able to implement.
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For example, if the only information that a synchronisation mechanism has access to is
the name of the most recent event in the lifetime of each invocation then about the only useful
policy it can implement is mutual exclusion at the granularity of all operations. Without
access to any other information such as the name of the operation that an invocation is
destined for, the synchronisation mechanism does not have the expressive power to implement
mutual exclusion at the granularity of individual operations. In other words, for a class that
has n operations, such a mechanism can implement the following policy (expressed here in

terms of guards and synchronisation counters):
Op1, Opa, ..., Op,: exec(Opy, Ops, ..., Op,) = 0;

However, it does not have access to enough information to be able to implement:

Op;: ezec(Opy)
Ops: ezec(Opy)

0;
0;

Op,: ezec(Op,) = 0;

If the information that a synchronisation mechanism has access to is increased from
knowing the most recent event in the lifetime of each invocation to also knowing which
operation an invocation is destined for then the synchronisation mechanism can record how
often different events occur for each operation—in effect, it has the power of synchronisation
counters. This enables it to implement a range of synchronisation policies such as mutual
exclusion, several variants of readers/writer, and alternation policy and the bounded buffer.

If a synchronisation mechanism has access to the arrival time of invocations then it can
implement a FCFS scheduling policy. Other scheduling policies such as the Shortest Job Next
scheduler and the Disk Head Scheduler can be implemented if a synchronisation mechanism

also has access to invocation parameters.

3.3.1 Information about Invocations Available at Events

The previous section discussed how the expressive power of a synchronisation mechanism is
proportional to the amount of information about invocations to which it has access. This
section discusses how a lot of information about invocations is available at events. The
importance of this is that is shows that event-based synchronisation mechanisms can have
good expressive power.

When an invocation arrives at a service object, the following information can be known

about it:

e The name of the invoked operation.
e The value of any “in” parameters.

e The place where program execution is to resume or results are to be returned when this

invocation has completed execution.
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Note, however, that while this information will be available, its format might vary
wildly from one host language and computer architecture to another. For example, the
information stored might be a PC (program counter) return address, the file descriptor
of a UNIX-style socket to which results are to be written, the pid (process identifier)

of a process to be woken up upon completion, or something else entirely.

e The most recent event associated with this invocation, i.e., arrival.
It should also be possible to record another piece of information about the invocation:
o A timestamp (local to the service object) denoting the invocation’s arrival time.

Similarly, at the start event, the same information plus the following can be known about

an invocation:
o A timestamp denoting the invocation’s start time.

Finally, at the term event, the same information plus the following can be known about

an invocation:

o A timestamp denoting the invocation’s term time.

e The value of “out” parameters and the operation’s “return” value, if any.

It is clear to see that the amount of information about an invocation of an operation that
is potentially available at the arrival, start and term events actually exceeds the amount of
information about the invocation that is typically available inside the body of the operation.
Of course, most of this extra information about invocations that is available at events would
be of no use to the code inside the body of an operation (which is why it is not usually made
available). However, some of this information can be of use to synchronisation mechanisms.
For example, the timestamp denoting the relative arrival times of invocations could be used

to implement a FCFS scheduler.

3.3.2 Accessibility Requirements
The Sos paradigm makes the following accessibility requirements upon invocations:

e All the information about an invocation, that a synchronisation mechanism has access
to, should be grouped together as a unit (e.g., as a data structure). This is a modularity

requirement.

e An action should have access to information about the invocation for which it is being

executed. This is required for expressive power.

e Information about invocations should be maintained in a list/collection over which
synchronisation code can iterate in order to compare (and, if need be, update) infor-
mation about invocations. In particular, information about pending invocations must

be accessible. If a synchronisation mechanism so wishes, it may also provide access
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to information about invocations that are currently executing or even those that have
already terminated execution. Like the previous requirement, this is also for reasons of

expressive power.

It is outside the scope of the paradigm to specify any of the following: what representation
should be used to store information about an invocation; how information about the current
invocation is to be accessed; the representation used to store lists/collections of information
about invocations; whether lists/collections of invocations should be maintained automati-
cally by the run-time system or manually by programmers; or the language construct used to
iterate over such collections. These details will vary from one language to another. However,
the principles are illustrated in the following example in which we use a generalised form of

the “for loop” [LSAST77] to iterate over invocations:

count := 0;
for p in waiting(Print) do
if p.arr_time < this_inv.arr_time then count ++; endif;

end;

Assume that count has been declared as a synchronisation variable! of the object and that
arr_time is the time at which an invocation arrived. The for loop implicitly declares a vari-
able, p, to range over the set of invocations which are currently wailing to execute operation
Print. In executing the above code, count records how many of these invocations have arrived
before the current invocation (denoted by this_inv).

Section 4.2 provides some examples to illustrate the utility of being able to access invo-
cations in this manner.

The Sos paradigm places two additional requirements upon accessibility of information
about invocations, but these cannot be discussed until after the final core concept of the

paradigm has been introduced.

3.4 Separation of Synchronisation Code and Data from Se-

quential Code and Data

The fourth, and last, component of the Sos paradigm is the requirement that code and data
used to synchronise access to an object be segregated from the sequential code and data of
the object.

To understand the rationale behind this requirement, consider the diagram in Figure 3.2

in which three types of variable are indicated.

'Our paradigm does not specify what syntax should be used to declare synchronisation variables as this
will vary from one host language to another. Some example syntax for declaring synchronisation variables can

be found in Section 4.2.
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Figure 3.2: Graphical description of an object’s code and variables

At the top of the diagram are sequential variables of an object, more commonly referred to
as instance variables. These variables are used to implement only the sequential functionality
of the object.

At the bottom are synchronisation variables of the object: variables which are used to
implement the synchronisation policy in force on the object, but are not needed to implement
the sequential functionality. Two well-known examples are semaphores and synchronisation
counters.

In the middle are hybrid variables of the object: variables which are both sequential (in-
stance) variables and synchronisation variables. Examples of hybrid variables used in exam-
ples in Chapter 2 include: (i) num in the Bounded Buffer (Figure 2.2 on page 21); (ii) priority
in the Dynamic Priority Print Queue (Figure 2.3 on page 22); and (iii) chopstick_avail in the
Dining Philosophers (Figure 2.4 on page 24 and Figure 2.5 on page 25).

Synchronisation code might access these hybrid variables while they are being updated by
sequential code and, as has been discussed in Section 2.2, this can result in synchronisation
code accessing them while they are in an inconsistent state.

We claim that most hybrid variables are really synchronisation variables which happen to
be implemented as instance variables (this claim will be supported in Section 4.2.3). All the
example synchronisation problems, supposedly requiring access to instance variables, that we
have been able to find in the literature have been mis-categorised in this manner. In fact, it
is difficult to think of a counter-example.

Thus, if language support is provided for synchronisation variables, and a strict separation
of sequential code and data from synchronisation code and data is enforced, then the problems
associated with synchronisation code accessing instance variables, as discussed in Section 2.2,
disappear.

We defer, until Section 4.5, discussion on how to handle the hypothetical case of variables

which are truly hybrid.

3.5 Accessibility Requirements Revisited

Having discussed the requirement of separation between sequential code/data and synchro-

nisation code/data, we can now finish the discussion about access to information about
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invocations.
Section 3.3.2 listed three accessibility requirements on invocations that the Sos paradigm

makes. There are two more:

o We previously discussed how it would be dangerous for synchronisation code to access
instance variables due to the possibility of the variables being examined while in an
inconsistent state. Similarly, it would be dangerous for synchronisation code to access
parameters if there was a possibility of them being updated while the synchronisation
code was examining them. This issue needs to be resolved if synchronisation code is to

have safe access to parameters. (This is discussed in Section 3.5.1.)

o It should be possible for programmers to declare synchronisation variables local to

invocations. (This is discussed in Section 3.5.2.)

In making these two final requirements, we achieve the symmetry of sequential and syn-
chronisation variables shown in Table 3.1. Thus, we argue, the introduction of “synchroni-
sation variables” has not added new concepts to language design, but rather has generalised

the existing concept of “variables.”

| Variable Type | Sequential | Synchronisation |
variables of an object | supported supported
parameters supported supported
local variables supported supported

Table 3.1: Symmetry of sequential and synchronisation variables

3.5.1 Parameters

Parameters are most often used to help implement the sequential functionality of an operation.
We refer to these as sequential parameters.

Sometimes a parameter is used to implement a scheduling policy, and is not actually being
used in the sequential body of an operation. A well-known example of this is the Shortest Job
Next scheduler [BH78] in which a parameter, len (indicating the estimated length of the job),
is used to schedule invocations. In this case len is said to be a synchronisation parameter.
Other examples of synchronisation parameters include gid (the group identifier) used in the
Dynamic Priority Print Queue (Figure 2.3 on page 22), and the table position, pos, passed to
Fat in the Dining Philosophers problem (Figure 2.4 on page 24 and Figure 2.5 on page 25).

Although hybrid variables of an object rarely, if ever, occur, hybrid parameters are more
common. An example can be found in the Disk Head Scheduler [Hoa74]: the parameter
indicating the part of the disk to which data is to be transferred is used in both the sequential
code (to physically move the disk head) and the synchronisation code (to schedule invocations

in order to minimise movement of the disk head).
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The Sos paradigm stipulates that hybrid parameters must not be accessed by synchroni-

sation code while they are being updated. Some possible techniques to ensure this include:

e The run-time system could arrange for the parameters of an invocation to be copied
when the invocation arrives, i.e., at the arrival event. These parameter copies could be
accessed by the synchronisation code, safe in the knowledge that if the sequential body of
an operation updated a parameter then this update would not affect the synchronisation
code’s copy of that parameter (and vice versa). A simple optimisation is for the run-time

system to copy only those parameters which are used in synchronisation code.

e The host language might make a restriction that the only type of parameters that can be
accessed by both sequential code and synchronisation code are those that are declared

to be read-only (akin to “in” parameters in Ada).

Although Sos requires that some technique be used, it does not specify which. This is because

the most appropriate technique to use will vary from one host language to another.

3.5.2 Local Variables

The concept of local variables is well-known in sequential programming languages. The con-
cept also makes sense when discussing synchronisation mechanisms. We are not suggesting
that variables local to the sequential body of an operation should be accessible to synchro-
nisation code: such an arrangement would lead to problems similar to those involved in
permitting synchronisation code to access instance variables. Rather, we propose that there
should be two categories of local variables: sequential local variables (what are commonly
referred to as “local variables”) and synchronisation local variables.

Note that sequential local variables and synchronisation local variables have different life-
times. The sequential local variables come into existence at the start of execution of an
invocation and are discarded at the termination of execution. Synchronisation local vari-
ables come into existence at the arrival of an invocation. They are usually discarded at
the termination of execution. However, the Sos paradigm does not preclude the possibil-
ity of information about invocations being kept after the termination of execution so it is
possible that synchronisation local variables might outlive the termination of an invocation’s
execution.

A well-known example of a synchronisation local variable is a timestamp associated with
each invocation to record its arrival time; this can be used to implement a FCFS scheduler.

Another example appears in a variation of the Shortest Job Next scheduler. Rather than
have the estimated job length passed in as a parameter, it might be possible to arrange
for the synchronisation code to calculate the value itself and record this information in a

synchronisation variable local to the relevant invocation.?

2There are two advantages to having the synchronisation code calculate the length of submitted jobs rather

than have clients pass the length in as a parameter. Firstly, it moves the inconvenience of calculating job
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3.6 Discussion

Having introduced the core concepts of the paradigm, we now take the opportunity to tidy

up a few loose ends and make some comments on the overall paradigm.

3.6.1 Invocations upon Self

This section offers a justification for the decision, mentioned in passing in Section 3.1, that
all invocations upon a service object, including self invocations, generate events.

In the Sos paradigm, synchronisation occurs at arrival, start and term events which mark
the lifespan of invocations. If a particular invocation was exempt from generating such events
then it would be impossible to synchronise it. Thus, in stating that all invocations generate
events, we are stating that ell invocations can be synchronised. We have no objection to a
compiler optimising away events that it has determined are not used.

An alternative, as practiced in some languages (e.g., CEiffel [L6h93] and more recently
suggested for Guide [Riv92, RR92], is that invocations which originate from other objects
are subject to synchronisation but invocations that originate from the service object itself,
i.e., invocations on self, are exempt from synchronisation. This has the effect of making self
invocations semantically different from other invocations. In general, it is a good idea to
avoid introducing idiosyncrasies into a language without good reason and there appears to
be no good reason for introducing this particular one.

There are two arguments that might be used for advocating treating the synchronisation
of self calls differently to that of non-self calls. However, both are flawed, as we now discuss.

The first argument is that such treatment facilitates the writing of classes in which some
operations are implemented in terms of other operations. For example, consider a bounded
buffer class that, along with Put and Get operations, also includes Get2, which obtains two
consecutive items from the buffer. It might seem natural to implement Get2 by having it
invoke self.Get twice. However, if these operations execute in mutual exclusion then doing
so would result in deadlock and hence, it is argued, self calls should not be synchronised.

However, in such cases, the problem can be easily solved by introducing an extra, private
operation to the class, say, ActualGetl. Gel is implemented by having it invoke self. ActualGet
once and Get2 is implemented by having it invoke self. ActualGel twice. Suitable synchro-

nisation constraints (expressed here as guards) for these operations would then be of the

form:
Put: ezec(Put, Get, Get2) = 0 and ... ;
Get: ezec(Put, Get, Get2) = 0 and ... ;
Get2: ezec(Put, Get, Get2) = 0 and ... ;

ActualGet: true;

length from clients to the service object, thus making the service more convenient to use. Secondly, it prevents
clients from thwarting the service object’s scheduling policy by deliberately under-estimating the length of

their own jobs.
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The second argument is based on the mistaken belief that in a sequential system, code
runs in mutual exclusion. If this belief is accepted then, it is reasoned, in order to be able
to reuse existing object-oriented, sequential code safely in a concurrent environment, objects
should, by default, be controlled by a mutual exclusion synchronisation policy [L6h93] [Pap93,
ch. 4]. If this argument is accepted then it follows that calls upon self would need to be
unsynchronised in order to prevent deadlock (as reasoned in the first argument above).

This argument implicitly assumes the granularity of synchronisation to be at the level of
objects. This assumption does not hold for the Sos paradigm which, as stated in Section 3.1,
provides synchronisation at the granularity of operation invocations. Hence, even if the
argument were valid, it would not be relevant to the Sos paradigm.

However, the argument is not valid since it is based upon the mistaken belief that in a se-
quential system code runs in mutual exclusion. If this were the case then sequential programs
that contained recursive calls would deadlock. Rather, sequential programs are “dangerous”
in that they do not contain any synchronisation constraints, e.g., mutual exclusion, to pre-
vent data corruption and it is only the fact that sequential programs do not contain multiple
threads that prevents data corruption.

Rather than writing classes with the assumption that they will be used in a sequential
environment and then trying to reuse them in a concurrent environment by introducing
language idiosyncrasies, it might be better to write classes with the assumption that they
will be used in a concurrent environment. This would guarantee the ability to safely reuse a
class in a sequential environment since a sequential program is, in effect, a special case of a
concurrent program that happens to contain just one thread. However, further discussion of

this topic is outside the scope of this thesis.

3.6.2 A Single Source of Information

In Section 2.1 we mentioned that Bloom [Blo79] claims a synchronisation mechanism should
have access to six different types of information in order to have good expressive power. In
actual fact, all of these six types of information either are information about invocations or
information that is derived from invocations.

For instance, three of Bloom’s types of information are: the relative arrival time of in-
vocations, invocation parameters and the name of the operation upon which an invocation
was made. As we illustrated in Section 3.3.1, these three pieces of information about an
invocation are known at the invocation’s arrival.

The other three types of information that Bloom lists are: the synchronisation state of
the object, history information and instance variables. We claimed in Section 3.4 (and we
will support this claim in the next chapter) that a synchronisation mechanism does not, in
fact, need access to the instance variables of an object. Rather it can maintain the informa-
tion it needs itself in the form of synchronisation variables. Bloom’s synchronisation state
and history information can be provided by synchronisation counters which, as we show in

Section 4.2.1, are also synchronisation variables. Synchronisation variables are maintained at
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events. Since events are associated with invocations it follows that synchronisation variables
denote information that is derived from invocations.

Thus we see that a synchronisation mechanism requires access to just one primary source
of information, not six derivative sources as Bloom claims, in order to be expressively pow-

erful.

3.6.3 Suitability for Different Computational Models

Concurrent, object-oriented languages can differ greatly in important aspects. For instance,
some languages support concurrency within objects while others support concurrency only
between objects. Some languages embody a shared-memory paradigm and operation invoca-
tions are based on procedure calls—transparently utilising RPC (remote procedure call) in
the event that an object being invoked is on a different node. Other languages do not assume
the existence of shared memory and implement operation invocations by message-passing.

Such key considerations in language design can have an effect on the design of synchroni-
sation mechanisms. It is quite common for a synchronisation mechanism to be designed for
a particular language. In such cases one might wonder if the synchronisation mechanism is
dependent upon some characteristic aspects of the host language, or if it might be possible
to use that synchronisation mechanism in other concurrent, object-oriented languages.

In designing the Sos paradigm, we have striven to avoid making unportable assumptions
about the underlying object model. In particular, throughout this chapter we have used the
term invocation without ever making any assumptions as to how an invocation is performed,
e.g., by procedure call or message-passing. Similarly, we have not made any assumptions as to
whether concurrency within an object is supported or if, instead, the servicing of invocations
will be serialised.

In avoiding such assumptions, the principles of the SOs paradigm should be applicable to

a wide range of concurrent, object-oriented languages.

3.7 Summary

This chapter has discussed the core concepts that constitute the Sos paradigm. The paradigm
will be used throughout the rest of this thesis, starting in the next chapter when we develop
a sample synchronisation mechanism to illustrate the paradigm. Throughout the thesis, it

will be shown that the Sos paradigm offers several benefits, including:

e We have argued that a synchronisation mechanism requires access to just one primary
source of information, rather than six derivative sources as Bloom claims [Blo79], in
order to have good expressive power. Since the SOs paradigm supports this primary
source of information, Sos-based synchronisation mechanisms can be expressively pow-
erful. Furthermore, minimising the number of sources of information can keep low

the number of constructs employed by a synchronisation mechanism and hence Sos-
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based synchronisation mechanisms can achieve their expressive power without the risk

of complexity or creeping featurism.

e By providing synchronisation code with the means to maintain its own variables, syn-
chronisation code no longer needs to access the instance variables of an object. As such,

the problems of unsafe access to instance variables are avoided.

o We will show that most of the concepts of the Sos paradigm can be implemented in
existing language constructs, thus permitting a Sos-based synchronisation mechanism

to be added to a host language with relative ease.

e S0s offers modularity by completely separating synchronisation code and variables from
sequential code and variables. We will shown in Part III that this separation facilitates
practical language support for generic synchronisation policies, and in Part IV that it
helps reduce the harmful effects of the ISVIS conflict,

In drawing this chapter to a close, it would be foolish to claim that the Sos paradigm is a
panacea for all the ills of concurrent programming. For instance, the paradigm is concerned
solely with synchronisation in service objects and does not address synchronisation issues in
client objects. Even within the domain of service objects, there are several issues that the
paradigm does not address, though we feel it could be extended to do so. A discussion of
these issues can be found in the “Future Work” chapter (Chapter 14).
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Chapter 4

Esp—A Sample Synchronisation
Mechanism to Illustrate the Sos

Paradigm

In this chapter we illustrate the SOs paradigm by means of a sample synchronisation mecha-
nism. At first sight, the mechanism looks like it is an enhancement of SP [MWBD91] and so,
for want of a better name, it was christened Esp (an Extension of Scheduling Predicates).
The structure of this chapter is as follows. Section 4.1 briefly explains the pseudo-code
notation that is used throughout this chapter and, indeed, much of the rest of this thesis.
Then, in Section 4.2, an extensive series of examples is used to introduce, and illustrate the
power of, the Esp synchronisation mechanism. In Section 4.3 we discuss how EsP is both a
declarative and a procedural synchronisation mechanism. Unfortunately, if care is not taken
with implementation then the price paid for Esp’s expressive power might be poor run-time
performance. With this in mind, Section 4.4 outlines some optimisation techniques that
might be employed. Section 4.5 returns to the topic of hybrid variables which we discussed
in the previous chapter. The chapter is brought to a close in Section 4.6 which summaries

the main points contained herein.

4.1 Notation

Figure 4.1 shows the layout of a class in EsP; the lines are numbered for ease of reference.
Note that a class is split up into a sequential part and a synchronisation part with the
synchronisation keyword (line 5) separating the two. The symmetry of the class’s compo-
nents is an attractive feature (which is enhanced by the comment on line 2). The sequential
code may not invoke any operations in the synchronisation code or access any of its variables,
and vice versa.

The code to update synchronisation variables is placed in actions (line 8). If the code in

an action becomes large or is replicated then the programmer may wish to place some of it
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class Foo {

: // sequential
variables
operations

synchronisation
variables
operations

events — actions

guards

—_
<
—

Figure 4.1: Layout of a class in Esp

into synchronisation operations (line 7) which the actions can invoke.

4.1.1 Guard Evaluation Semantics

The semantics of the guards employed by Esp are intuitive: an invocation will be permitted
to start execution as soon as its guard evaluates to true. One may think that in order
to guarantee such as soon as semantics, an implementation would have to enter a loop to

continually evaluate guards. However, this is not the case.

The strict segregation of synchronisation code/variables from sequential code/variables
that Sos imposes means that the only variables which a guard can reference are synchro-
nisation variables. Furthermore, from the event-based nature of Sos, we know that these
synchronisation variables can be updated only at events. Thus, assuming that guards are
free from side effects, if a guard evaluates to false then the earliest occasion at which it might
re-evaluate to true is at the next event. As such, re-evaluating guards at every event is
sufficient to guarantee that guards will evaluate to true (and hence an invocation will start

execution) as soon as possible.

4.2 Examples

We now illustrate the usage of synchronisation variables through examples. These examples
are organised as follows. The examples in Section 4.2.1 illustrate how several synchronisation
mechanisms are subsumed by EsP, and hence by the Sos paradigm. The examples in Sec-
tion 4.2.2 illustrate how complex scheduling policies can be implemented easily. Finally, the
examples in Section 4.2.3 are those commonly found in the literature that traditionally have
been implemented with the aid of instance variables; we show how these can be implemented

with synchronisation variables.
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4.2.1 Subsumption of Other Synchronisation Mechanisms

The examples in this section show how Esp subsumes several synchronisation mechanisms.

Synchronisation Counters

The code in Figure 4.2 declares three synchronisation variables—a, b and ¢. These are all
initialised to zero when an object is created. (In the pseudo-code notation we are using, the
constructor of a class is an operation with the same name as the class itself. Thus start(Foo)
is an event associated with the start of execution of the constructor of an object of type Foo.)
Actions to increment a, b and ¢ are executed whenever the events arrival(Bar), start(Bar)
and term(Bar), respectively, occur. Two of these variables are then used in the guard on

Bar, which implements mutual exclusion.

class Foo {
Foo(...){... } // constructor
Bar(...){... }
synchronisation
int a,b,c;
start(Foo) — {a:=0;b:=0;¢c:=0; }
arrival(Bar) — a ++4;
start(Bar) — b ++;
term(Bar) — ¢ ++;

Bar: b — ¢ = 0;

Figure 4.2: Implementing synchronisation counters

In effect, this example uses synchronisation variables to implement synchronisation coun-
ters. (The variable a implements the counter arrival(Bar), and so on.) Thus we see that
synchronisation variables subsume the power of synchronisation counters. Although sub-
sumed, synchronisation counters are provided in Esp as useful syntactic sugar.

An interesting point is that Scheduling Predicates, upon which Esp is based, also sub-

sumes the power of synchronisation counters, but in a different manner [MWBDO91, pg. 187].

Relative Arrival Time of Invocations

The previous example illustrates how synchronisation variables of an object can be declared
—the syntax is similar to that used to declare sequential variables of an object (i.e., instance
variables).

The next example (Figure 4.3) shows how to declare a synchronisation variable, arr_time,

local to (invocations of ) an operation. Each invocation for operations A, B and C'is given its

48



own instance of arr_time. Whenever an invocation arrives (denoted by an arrival event), the
arr_time variable of that invocation will be assigned the current value of the clk variable and
clk will be incremented. In this way, each invocation will have a unique value for arr_time.
The expression this_inv.arr_time can then be used in guards to schedule invocations based

on their relative arrival time.

class Foo {
Foo(...){... } // constructor

synchronisation
int clk;

int arr_time local to A, B, C;

start(Foo) — clk := 0;
arrival(A, B, C) — this_inv.arr time := clk ++;

Figure 4.3: Implementing the relative arrival time of invocations

Several synchronisation mechanisms (e.g., Scheduling Predicates, FEiffel|| [Car90a] and
CEiffel [L6h91]) provide programmers with access to the relative arrival time of invocations.
The above example illustrates that, as for synchronisation counters, this functionality is
simply a form of syntactic sugar for synchronisation variables.

As with synchronisation counters, Esp automatically maintains arr_time for the conve-

nience of programmers.

Scheduling Predicates

Consider the following guard which implements a FCFS queue:

Print: ezec(Print) = 0

and there_is_no(p in waiting(Print): p.arr_time < this_inv.arr_time);

The code in Figure 4.4 implements the same functionality using a for loop to iterate over
invocations. The if statement’s condition (in the body of the loop) was derived directly from
the condition used in the there_is_no predicate above. Thus we see that EsP subsumes Sched-
uling Predicates. As with synchronisation counters and arr_time, Esp provides scheduling

predicates as a form of syntactic sugar.
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class FCFSPrinter {
Print(...) {... }
synchronisation
Boolean NolnvocationBeforeMe(int myTime)
{ for p in waiting(Print) do
if p.arr_time < myTime then
return false;
endif;
end;
return true;

}

Print: ezec(Print) = 0 and NolnvocationBeforeMe(this_inv.arr_time);

}

Figure 4.4: First-come, first-served Printer

Path Expressions and the “by” Statement of SR

Path Expressions can be implemented in terms of synchronisation counters [McH89] [Cam83].
Since Esp subsumes the power of synchronisation counters, it follows that Esp also subsumes
the power of Path Expressions.

The synchronisation mechanism of the SR language [And81] provides a by statement
which is used to schedule invocations of an operation based on a parameter. For example,
assuming operation Print takes a parameter called len, the following guard implements a
Shortest Job Next scheduler:

Print: ezec(Print) = 0 by len;

This guard containing a by clause is equivalent to the following guard containing a scheduling

predicate:
Print: ezec(Print) = 0 and there_is_no(p in waiting(Print): p.len < this_inv.len);

Thus we see that scheduling predicates subsume the power of the by clause. Since Esp
subsumes the power of scheduling predicates, it follows that Esp also subsumes the power of

the by clause.

4.2.2 Scheduling Power

The following examples show how EsP can implement various complex scheduling policies.

Alarm Clock

In the Alarm Clock problem [HoaT74], an operation, WakeUp, must be implemented which

will delay for a specified period of time. A usual assumption is that it is possible to arrange

50



for another operation, Tick, to be invoked periodically (say, once a second) to mark the
passage of time.

Our solution is shown in Figure 4.5. In this, the counter term(Tick) is used to indicate
the current time. We associate a variable, wakeup_time, with each WakeUp invocation and
calculate its value at the arrival(WakeUp) event. The resultant guard on WakeUp is trivial

and intuitive.

class AlarmClock {
WakeUp(int period) { }
Tiek() { }
synchronisation
int  wakeup_time local to WakeUp;
arrival(WakeUp) — this_inv.wakeup_time := term(Tick) + this_inv.period,;
WakeUp: term(Tick) >= this_inv.wakeup _time;

Figure 4.5: The Alarm Clock

Notice that the operations WakeUp and Tick have empty bodies. This is because the
Alarm Clock is purely a synchronisation problem. The operations are, in effect, just hooks into
the synchronisation code. Being able to view the Alarm Clock as a purely synchronisation
problem is not possible in many other languages in which synchonisation code has to be
combined with the sequential code of operations in order to implement it. The Sina [TAS8S,

pg. 32-33] and Monitor [Hoa74, pg. 553—-554] implementations are prime examples.

Shortest Job Next (Starvation-free Version)

In the Shortest Job Next scheduler [BHT78], jobs are serviced in reverse order of their estimated
length. Thus it is possible for a long job to be skipped over indefinitely by a continuous stream
of shorter jobs. One way to overcome this inherent unfairness is to adjust the priority (in
this case, the estimated length) of jobs which are skipped over so that they are less likely to
be skipped over in future.

Figure 4.6 shows our solution to this. The guard on Print implements the basic scheduler,
and the action associated with the start(Print) event iterates through all of the waiting
invocations to decrement the len variable of any that have been skipped over.

If it is preferred that clients pass in their job’s estimated length as a parameter rather than
have it calculated locally then this can be easily accomodated by removing the declaration

of len as a synchronisation variable and instead declaring it as a parameter to Print.!

! This requires, as discussed in Section 3.5.1 on page 40, that the run-time system arranges for two copies
of parameters to be maintained: one for the sequential code and the other for the synchronisation code. Thus

decrementing len would only affect the synchronisation code’s copy of this parameter.
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class FairSJN {
Print(string fileName) { ... }
synchronisation
int len local to Print;
arrival(Print) — this_inv.len := ... // use a system call to determine file length
start(Print) —
{ for p in waiting(Print) do
if p.arr_time < this_inv.arr_time then p.len ——; endif’;
end;
}
Print: ezec(Print) = 0 and there_is_no(p in waiting(Print): p.len < this_inv.len or

p.len = this_inv.len and p.arr_time < this_inv.arr_time);

Figure 4.6: Starvation-free, Shortest Job Next scheduler

It is equally trivial to obtain the basic (unfair) SJN scheduler—just delete the action

associated with the start(Print) event.

Dining Philosophers (Starvation-free Version)

The Guide solution to the Dining Philosophers problem shown in Figure 2.5 on page 25
does not guarantee to prevent starvation of a philosopher by conspiracy on the part of her
immediate neighbours to keep her blocked. One way to prevent such starvation is to set an
upper limit on how many times a philosopher may be skipped over.

The code in Figure 4.7 illustrates this approach. This solution makes use of two predicates
in the guard of Fat.

The first predicate examines parameters of the currently erecuting invocations to deter-
mine if it is possible for a philosopher to start eating.

The purpose of the second predicate is to prevent a waiting philosopher being skipped
over indefinitely (no more than three times is the threshold value used). This predicate
relies on a variable, skipped, being maintained for each pending Fat invocation. When an
Fat invocation arrives, its skipped variable is initialised to zero; whenever a philosopher is
allowed to eat—designated by a start(Fat) event—a for loop determines which invocations

were skipped over, and increments their skipped values.

4.2.3 Instance Variables

In Section 3.4, we claimed that if a language provides support for synchronisation variables
then the synchronisation code of an object will not require access to any variables used by the

sequential code. We now substantiate this claim by taking several synchronisation problems
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type TablePositon is int subrange(0..4);
class FairDiningPhilTable{
Eat(TablePosition pos) { ... }
synchronisation
int skipped local to Eat;
arrival(Eat) — this_inv.skipped := 0;
start(Eat) —
{ for p in waiting(Eat) do
if ShareForks(p.pos, this_inv.pos) and p.arr_time < this_inv.arr_time
then p.skipped ++; endif;
end;
}
boolean ShareForks(TablePosition i, TablePosition j)
/] we “share forks” with somebody if they are sitting at
// our position, to our immediate left or immediate right
{return i+ 1) mod5=jori=jor (j+ 1) mod5=1i; }

Eat: there_is_no(p in executing(Eat): ShareForks(p.pos, this_inv.pos)) and
// the rest of this guard is to prevent starvation
there_is_no(p in waiting(Eat): ShareForks(p.pos, this_inv.pos) and
p.arr_time < this_inv.arr_time and p.skipped >= 3);

Figure 4.7: Starvation-free solution to the Dining Philosophers problem

from the literature that have been implemented using instance variables, and re-implement

them using synchronisation variables instead.

Dynamic Priority Print Queue

In Section 2.2.1, we introduced the Dynamic Priority Printer and discussed the problems
associated with trying to maintain the group priorities as instance variables. Figure 4.8
shows an Esp implementation of this scheduler. The main difference between this and the
previous attempt (Figure 2.3 on page 22) is that the priority/] variable and the code to
maintain it have been moved from the sequential part of the object to the synchronisation
part. A minor side-effect is that the UpdatePriorily operation now has an empty body since
(like the WakeUp and Tick operations in the Alarm Clock) it is, in effect, just a hook into
the synchronisation code.

This movement of variables and the code to maintain them into the synchronisation part
of an object does not result in a decrease in code size; indeed the amount of code is the

same as before. Rather, the benefits we gain are that: (i) the code is more modular, since
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type Groupld = (one, two, three, four, grad, staff);

class Printer {
Printer(...) { ... } // constructor
UpdatePriority(Groupld gid, int NewPriority) { }
Print(Groupld gid, string FileName) { ... }
synchronisation

int priority[Groupld];

start(Printer) — { “initialise priority[]”; }
start(UpdatePriority) — { priority[this_inv.gid] := this_inv.NewPriority; }
Print: ezec(Print) = 0 and there_is_no(p in waiting(Print):

priority[p.gid] > priority[this_inv.gid] or

priority[p.gid] = priority[this_inv.gid] and p.arr_time < this_inv.arr_time);

Figure 4.8: Solution to the Dynamic Priority Print Queue

all variables/code to implement the scheduling policy of the object are separated from those
which implement its functionality (in this case, the ability to print a file); and (ii) it is easier
to ensure the synchronisation code is correct with priority/] as a synchronisation variable

rather than a sequential variable.

The Bounded Buffer

A bounded buffer implemented with a fixed size array needs two variables for its maintenance:
put_index specifies the array position at which Put should place the next item, and get_index
specifies the array position at which Get should retrieve the next item.
A third variable, num, is used to check for underflow and overflow. This latter variable is
a synchronisation variable, while put_index and get_index are sequential (instance) variables.
Some implementations of bounded buffer in the literature drop the variable pul_index

since its value can be calculated by the formula:
put_index = (get_index + num) mod “size of array”

However, this results in num being used in both the sequential code as well as the synchroni-
sation code (as previously shown in Figure 2.2 on page 21), thus making it a hybrid variable.
Having the sequential code maintain both put_index and gel_index and leaving num as a
synchronisation variable retains modularity. It also brings the benefit of increased potential
for concurrency: since Pul manipulates only put_indez and Gel manipulates only gel_indez,
Put and Get can execute concurrently with each other.

The implementation of the bounded buffer shown in Figure 4.9 does not explicitly declare
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class Buffer[elem, Size] {

int  get_index, put_index; elem  data[Size];

Buffer() { get_index := 0; put_index := 0; }

Put(...) { ... “update put_index”; ... }

Get(...) { ... “update get_index”; ... }
synchronisation

F#define num term(Put) — term(Get)
Put: ezec(Put) = 0 and num < Size;

Get: exec(Get) = 0 and num > 0;

Figure 4.9: Esp solution to the Bounded Buffer

num. Rather, this implementation relies on the fact that num is incremented for every Put

and decremented for every Get. Thus, its value is given by the formula:

num = term(Put) — term(Get)

Dining Philosophers (Revisited)

Figure 4.7 on page 53 showed an implementation of the Dining Philosophers that made use
of predicates. Now we show an alternative solution—one that makes use of synchronisation
variables of the object rather than relying on predicates.

The code in Figure 4.10 shows this solution. An array of booleans, chopstick_availf],
indicates the availability of each chopstick at the table. Initially all chopsticks are avail-
able. When a philosopher starts to eat (indicated by the start(Eat) event), chopstick_availf]
is updated to indicate that the appropriate chopsticks are now in use. Similarly, when a
philosopher finishes eating, the chopsticks are once again marked as being available. With
the availability of the chopsticks being maintained at events, the guard on Fat is trivial and
reflects the problem description. This can be compared with the Guide solution (Figure 2.5
on page 25).

The code in this example shows actions invoking synchronisation operations. We could
have written the action code “inline” but we feel that the use of synchronisation operations

improves the clarity of the code.

Disk Head Scheduler

Several different algorithms exist to schedule the transfer of data to/from a disk. For example,
to minimise head movement, a “nearest job next” policy might be used [And81, pg. 418-419].
However, this could result in starvation of invocations that are far away from the disk head.

An alternative strategy is to serve invocations in one direction until there are no more and
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type TablePositon is int subrange(0..4);
class DiningPhilTable {
DiningPhilTable(...) { ... } // constructor
Eat(TablePositon pos) { ... }
synchronisation

boolean  chopstick_avail[TablePositon];

init() { “set all chopstick_avail[] to true”; }
toggle_chopsticks(TablePosition pos)
{ chopstick_avail[pos] := not( chopstick_avail[pos] );
chopstick_avail[(pos + 1) mod 5] := not( chopstick_avail[(pos + 1) mod 5] );
}
start(DiningPhilTable) — init();
start(Eat), term(Eat) — toggle_chopstick(this_inv.pos);

Eat: chopstick_avail[this_inv.pos] and chopstick_avail[(this_inv.pos + 1) mod 5];

Figure 4.10: Solution to the Dining Philosophers problem

then reverse direction [Hoa74]. This is sometimes called the “elevator algorithm” because it
mimics the behaviour of a lift.

The code in Figure 4.11 implements the elevator algorithm. The Distance function in
the synchronisation part of the class calculates the maximum distance the disk head might
have to travel to get to an invocation. The body of this function is somewhat complex as the
calculation is dependent not only on the relative positions of the disk head and the invocation,
but also on the current direction of travel of the disk head. If a “nearest job next” policy was
desired then the body of Distance would be simpler; in fact, it would contain just a single

statement:
return abs(headPos — dest);

The synchronisation code updates the position of the disk head, headPos, and its direction
of travel, goingUp, whenever a call to Transfer is permitted to start execution. With this
infrastructure in place the guard on Transfer is trivial and intuitive.

The code in Figure 4.11 provides a single operation, Transfer, for which invocations are
scheduled and there is no way for a client of this class to bypass the scheduler. This is in
contrast with the Monitor implementation of the Disk Head Scheduler [Hoa74, pg. 555-556]

which relies on clients to obey the following protocol:

diskhead.Request
client code to transfer the data

diskhead.Release

56



const MaxCylinder = 100;
type CylinderNum is int subrange(0..MaxCylinder);
class DiskHeadScheduler {
DiskHeadScheduler(...) { ... } // constructor
Transfer(CylinderNum dest, DataBlock data)
{
“move the disk head to ‘dest’”
“transfer the ‘data’ to the disk”
}
synchronisation
CylinderNum  headPos; boolean  goingUp;

int Distance(CylinderNum dest)
{
if dest = headPos then
return 0;
elsif goingUp and dest > headPos or not(goingUp) and dest < headPos then
return abs(headPos — dest);
elsif goingUp and dest < headPos then
return 2 x MaxCylinder — headPos — dest;
elsif not(goingUp) and dest > headPos then
return headPos + dest;

endif
}

MaintainDirection(CylinderNum dest)
{
if dest < headPos then
goingUp :=false;
elsif dest > headPos then
goingUp :=true;
endif;
}

start(DiskHeadScheduler) — { headPos := 0; goingUp := true; }
start(Transfer) —

{

MaintainDirection(this_inv.dest);
headPos := this_inv.dest;

}

Transfer: ezec(Transfer) = 0 and there_is_no(t in waiting(Transfer):
Distance(t.dest) < Distance(this_inv.dest));

Figure 4.11: First solution to the Disk Head Scheduler
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(The Request and Release operations are provided by the monitor but Transfer is not.) It
would be possible for clients of such a monitor to disregard the protocol and transfer data in
an unsynchronised manner.

A criticism of our implementation of the Disk Head Scheduler is that repeatedly invoking
Distance within the guard is inefficient. We can combat this inefficiency as follows.

In the elevator algorithm, the distance of a pending invocation from the disk head—as
calculated by the Distance function—is highest when the invocation first arrives and decreases
thereafter. It decreases whenever any other invocation is serviced and it is possible to calculate
by how much it decreases. Thus, one could declare and maintain a variable, distance, local
to each Transfer invocation and use this variable in the guard in place of invoking Distance.

Figure 4.12 illustrates the changes in code needed to achieve this.

const MaxCylinder = 100;
type CylinderNum is int subrange(0..MaxCylinder);
class DiskHeadScheduler {
DiskHeadScheduler(...) { ... } // constructor
Transfer(CylinderNum dest, DataBlock data) ...
synchronisation
int distance local to Transfer;
... // unchanged code deleted to save space
MaintainInvocationDistance(int deltaHeadMovement)
{
for t in waiting(Transfer) do
t.distance := t.distance — deltaHeadMovement;
end;

}

arrival(Transfer) — { this_inv.distance := Distance(this_inv.dest); }
start(Transfer) —
{
MaintainInvocationDistance( Distance(this_inv.dest) );
MaintainDirection(this_inv.dest);
headPos := this_inv.dest;

}

Transfer: ezec(Transfer) = 0 and there_is_no(t in waiting(Transfer):
t.distance < this_inv.distance);

Figure 4.12: Optimised solution to the Disk Head Scheduler

This code is still inefficient, albeit not as inefficient as the first solution we presented.
However, further improvements may still be possible with the aid of an optimising compiler.
Later, in Section 4.4, we mention some compile-time optimisations. One of particular rele-
vance to the current example is optimisation by transformation. Briefly, if a compiler can

recognise that a certain pattern of guards specifies a particular synchronisation policy then it
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could generate code to implement that policy in a more efficient manner. For example, if the
compiler recognises that a guard schedules invocations based on the value of a parameter, or
a synchronisation local variable, then it could generate code to maintain an ordered list of
invocations; whenever an invocation is to be allowed to start executing, the run-time system
need only choose the invocation at the head of the list.

The guard for Transfer in Figure 4.12 is in this optimisable form: it schedules invoca-
tions based on the distance variable of each invocation. Thus an optimising compiler could
generate code to maintain a list of Transfer invocations that is ordered by distance. The
only complication is that the action associated with the start(Transfer) event updates the
distance variable of pending invocations. In this particular example distance is decremented
by the same amount for each invocation and hence there is no change in the relative order of
invocations. However, in general, such modifications might necessitate a re-sort of the list.

Table 4.1 compares the run-time cost of our two versions of the Disk Head Scheduler.
In our first solution (Figure 4.11), the run-time system can simply append newly arrived
invocations to the end of the invocation list, taking O(1) time, but then it potentially has
to make O(N?) comparisons when evaluating the guard of Transfer in order to decide which
invocation should execute next. If a compiler optimises our second solution then newly arrived
invocations will require O(N) comparisons to place them into the invocation list and choosing
the next invocation to be executed is simply a matter of removing the head element of the
list, taking O(1) time. This is as fast as the Monitor’s solution [Hoa74, pg. 555-556] which
also requires O(N) time for insertion into a condition queue and O(1) time for removal. Thus

we see that the high-level nature of EsP need not result in poor performance.

insert item | remove item | total cost
Original code (Figure 4.11) O(1) O(N?) O(N?)
Optimised code (Figure 4.12) | O(N) O(1) O(N)

Table 4.1: Cost of maintaining the invocation list for the Disk Head Scheduler

4.3 Esp is both Declarative and Procedural

If programmers use only guards and the automatically maintained synchronisation variables
(synchronisation counters, the arr_time and parameters of invocations) of Esp then they
use it in a purely declarative manner. This declarative subset of Esp is, in effect, SP and
it has good expressive power. When faced with a synchronisation policy that is outside
the expressive power of SP, programmers can use actions to maintain extra synchronisation
variables. As more and more use is made of actions, the more procedural (and, hence, less
declarative) Esp appears to be. Thus one might consider Esp to be a declarative mechanism
that degrades gracefully into a procedural mechanism.

On the other hand, we showed in Section 4.2.1 that most of the declarative constructs

59



of Esp—synchronisation counters, the relative arrival time of invocations, and scheduling
predicates—are simply forms of syntactic sugar. If these syntactic sugar constructs were
removed then the remaining core of Esp would be quite procedural in nature. Thus, one
might consider EsP to be a procedural mechanism that happens to provide some declarative
syntactic sugar.

As far as we know, this way in which Esp is simultaneously a declarative and a procedural
synchronisation mechanism is unique. The only other synchronisation mechanism we know of
that offers both declarative and procedural programming styles is Eiffel||. In this, a declarative
synchronisation mechanism has been implemented on top of the native, procedural mechanism
[Car90b]. However, a limitation of Eiffel|| is that programmers can use either the declarative

mechanism or the procedural mechanism, but not degrade gracefully from one into the other.

4.4 Optimisation Techniques

The numerous examples presented in this chapter show that Esp offers excellent expressive
power. It is natural to wonder if the price of this power will be slow execution speed. While
this would certainly be true of a naive implementation of Esp, optimisation can improve its
execution speed several-fold. Sections 4.4.1 and 4.4.2 outline some approaches that can be

taken to optimise Esp code.

4.4.1 Re-evaluation Matrices

Section 4.1.1 on page 47 discussed how re-evaluating guards at every event is sufficient to
guarantee the intuitive as soon as semantics of guards. However, it is usually unnecessary
to re-evaluate guards this often. A guard is expressed in terms of synchronisation variables,
which are updated at events. Thus, if a guard evaluates to false then it is necessary to
re-evaluate it only at those events that update one or more of the synchronisation variables
referenced by the guard. Re-evaluating the guard at events other than these would be redun-
dant since the guard could not have changed value.

An optimising compiler could construct a re-evaluation matriz that shows at which events
guards need be re-evaluated. This matrix could then be used to generate code that avoids
unnecessary re-evaluation of guards.

There are two tasks involved in constructing a re-evaluation matrix: (i) determining at
what events each synchronisation variable is updated, and (ii) determining what synchronis-
tion variables are used in the evaluation of each guard. We discuss each of these tasks in
turn. Then we give an example of a re-evaluation matrix and discuss how it can be optimised

to further eliminate unnecessary guard re-evaluations.

4.4.1.1 Determining the Events at which a Synchronistion Variable is Updated

EsP maintains some synchronisation variables automatically, and it is trivial for the compiler
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to determine at what events these are updated.

For example, the arrival(Foo) synchronisation counter is updated only at the arrival(Foo)
event. Similarly, other synchronisation counters are updated at their respective events. Recall
that the counter wait(Foo) is equivalent to the expression “arrival(Foo) — start(Foo)” so the
wait(Foo) counter is updated at these two events. Similarly, the ezec(Foo) counter is updated
at the start(Foo) and term(Foo) events.

Waiting(Foo) and ezecuting(Foo) are collections of invocations and thus are updated
whenever an invocation is added or removed. Thus, waiting(Foo) is updated at the events
arrival(Foo) and start(Foo). Similarly, ezecuting(Foo) is updated at the start(Foo) and
term(Foo) events. Waiting(Foo) and ezecuting(Foo) can also be considered as updated if
assignments are made to synchronisation local variables of Foo invocations. For example, if
the following code were executed in an action then it would be considered to be an update

to waiting(Foo):

for p in waiting(¥oo) do
if p.arr_time < this_inv.arr_time then p.len——; endif

end

It can be more difficult for the compiler to determine at what events programmer-declared
synchronisation variables are maintained. Certainly, an assignment statement in an action is
an unambiguous indication that a synchronisation variable is being updated at that event.
However, it is possible that a variable might be updated, not directly in an action, but rather
in a synchronisation operation that is invoked by the action. Thus a compiler might have
to perform flow-analysis in order to determine what synchronisation variables are updated
at a particular event. If the host language makes it possible for variables to be updated via
pointers (and many languages do) then, in the general case, flow-analysis might not be able
to determine with full accuracy what synchronisation variables are updated at an event. In
more common cases, however, flow-analysis is likely to be accurate. In those cases where
flow-analysis cannot determine what synchronisation variables are updated at a particular
event then the compiler should, say, take the pessimistic guess that all programmer-declared
synchronisation variables are updated at the event in question. In this way, the compiler

would not be engaging in any unsafe optimisations.

4.4.1.2 Determining the Synchronisation Variables Accessed in a Guard

The synchronisation variables accessed by a guard can usually be determined by an inspection

of the guard. For example, the following guard accesses variables ezec(Read) and ezec(Write):
Write: ezec(Read, Write) = 0;

However, if a guard invokes a synchronisation operation then flow analysis must be performed
to determine the full set of variables that the guard accesses. As for actions, flow analysis

on guards should usually be satisfactory but it is possible that it may prove inconclusive, in
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which case the compiler should err on the side of caution when guessing which variables the

guard accesses.

4.4.1.3 Optimising the Re-evaluation Matrix

To illustrate the re-evaluation matrix, consider the following guards, taken from the Bounded

Buffer example (Figure 4.9 on page 55).

F#define num term(Put) — term(Get)
Put: ezec(Put) = 0 and num < Size;

Get: exec(Get) = 0 and num > 0;

The guard for Put accesses the following synchronisation variables: exzec(Put), term(Put)
and term(Get). Similarly, the guard for Get accesses: exec(Get), term(Put) and term(Get).

The re-evaluation matrix obtained from these guards is as follows:

arrival(Put) | start(Put) | term(Put) | arrival(Get) | start(Get) | term(Get)

Put v J J
Get Vv Vv Vv

Each row in the matrix represents a guard. The columns in the matrix represent events. A

tick (“y/7) in a cell of the matrix indicates that one or more synchronisation variables used
by the guard of that row are updated at the event of that column. Thus we note that if
an invocation of Put is blocked then its guard need be re-evaluated only at the start(Put),
term(Put), and term(Get) events.

This re-evaluation matrix is exactly half-full which means that, on average, a blocked
invocation will have its guard re-evaluated only half as often as it would have if a re-evaluation
matrix had not been constructed. However, this can be improved even further by optimising
the re-evaluation matrix itself.

In the solution to the bounded buffer problem, the expression “ezec(Put) = 07 leads
to Put’s guard being re-evaluated at the start(Put) event. However, this guard evaluation
is unnecessary since a start{(Put) event can only make exec(Put) non-zero. Similarly, the
guard of Get need not be re-evaluated at the start(Get) event. Taking this into account, the

re-evaluation matrix can be reduced to:

arrival(Put) | start(Put) | term(Put) | arrival(Get) | start(Get) | term(Get)

Put Vv v
Get Vv V

This optimisation on the re-evaluation matrix has reduced it from being half-full to being

just one-third full. Three comments are in order about this optimisation on the matrix.
Firstly, a similar optimisation can be applied to guards that contain the expression
“wait(Put) = 07. In this case, an invocation need not have its guard re-evaluated at the

arrival(Put) event, since this event can only make wait(Put) non-zero.
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Secondly, this optimisation can only be applied where the constant 0 is used. For example,
if the expression “exec(Put) < 1”7 was given then the guard would have to be re-evaluated at
the start(Put) event. Nevertheless, the optimisation is worthwhile because the constant 0 is
used frequently.

Thirdly, this optimisation works on expressions of the more general form:
exec(Op,) + exec(Ops) + - - - + exec(Op,) = 0

In such cases start(Op; ,) need not be marked in the re-evaluation matrix.

4.4.2 Optimisation by Transformation

Even allowing for the re-evaluation matrix, it is likely that the evaluation of guards will be
expensive relative to the cost of using a less powerful synchronisation mechanism. Therefore,
one possible optimisation approach is to recognise that certain patterns of guards/actions
implement particular synchronisation policies, and then generate code to implement these
policies in a cheaper manner.?

For example, consider an object which has three synchronised operations: A, B and C.
The following guards specify that A and B execute in mutual exclusion of each other, and

that C' executes in mutual exclusion of itself:

synchronisation
A: ezec(A, B) = 0;
B: exec(A, B) = 0;
C: exec(C) = 0;

If a compiler can recognise the semantics of these guards then it could transform them into
appropriate wait and signal operations on semaphores (one semaphore for A and B, and
another for C') surrounding the body of the operations.

Transformations might also be applied to guards with scheduling predicates. For example,
an intelligent compiler might recognise that the following guard queues invocations based
on the tuple (len, arrival) and hence generate code to maintain an ordered linked list of

invocations:

Print: ezec(Print) = 0
and there_is_no(p in waiting(Print): p.len < this_inv.len

or p.len = this_inv.len and p.arr_time < this_inv.arr_time);

If implemented, such transformations would offer programmers the high-level expressive
power of Esp but with the efficiency of low-level synchronisation mechanisms.
The main obstacle to implementing optimisation by transformation is, of course, having

the compiler recognise the semantics of certain patterns of Esp code, especially if the code

2Optimisation by transformation has been applied successfully in other contexts: e.g., tuple space opera-
tions in Linda [Zen90].
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includes actions as well as guards. However, this is not un-surmountable. We will return to
this topic in Part III of this thesis to discuss how generic synchronisation policies offers a

practical approach to this difficult problem.

4.5 Hybrid Variables

In Section 3.4 we said that the variables of an object might be sequential, synchronisation or
hybrid, but that, in practice, hybrid variables rarely, if ever, occur. In this section we discuss
how hybrid variables, if they should occur, can be handled in Esp.

For a variable to be “hybrid” means that it is needed for the sequential functionality
of an object and also for its synchronisation. In such cases, we propose that programmers
maintain {wo variables in step: one a (sequential) instance variable and the other a synchro-
nisation variable. In effect, we are replacing the hybrid variable with a hybrid concept that
is implemented by two separate variables.

To see how the two variables can be maintained in step, consider an object which contains
two operations: A and B. Consider also that the object has a hybrid variable, z, which is to
be initialised to zero, incremented every time A is invoked and decremented every time B is
invoked.

Code to maintain the two variables in step is shown in Figure 4.13. The sequential
variable, z, is maintained inside the bodies of the operations while the synchronisation variable

is maintained by similar code at events associated with the corresponding operations.

class Foo{
int  x;
Foo() {...x:=0;... }
A { ..o x4+ ...}
B..){...x——;... }

synchronisation
int  x;
start(Foo) — x := 0;
term(A) — x ++;

term(B) — x ——;

Figure 4.13: Maintainence of sequential and synchronisation variables in step

An important point to note is that the synchronisation variable, z, is maintained inde-
pendently of its sequential counterpart, and vise versa. Thus the synchronisation code does

not need to access, either directly or indirectly, the (sequential) instance variable, and so we
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retain the modularity of having sequential code and synchronisation code segregated.
Earlier, on page 52 of Section 4.2.3, we argued that in the bounded buffer the variable
num is a synchronisation variable only and is not required by the sequential code. If the
reader does not agree with this and insists that num is needed by both the sequential and
synchronisation code® then it is possible to accommodate this alternative point of view by
use of the coding style shown in Figure 4.13: variable z corresponds to num, and operations

A and B to Put and Get, respectively.

4.5.1 A Limitation of the Paradigm

We have claimed that the two variables implementing a hybrid concept can be maintained
independently of each other. It is, however, possible to think of a hypothetical case in which
this does not hold true.

The code in Figure 4.13 maintains z using simple and deterministic logic. But consider
what would happen if the code to maintain x was quite complex or even non-deterministic.
For example, consider the case where the value assigned to z in operation A is dependent on,
say, a high-speed clock. Even if the synchronisation code accessed the same clock, the time
returned by the clock might differ between successive calls and so there is no guarantee that
the synchronisation variable, z, will have the same value as its sequential counterpart.

A work-around in this case is for the sequential code to invoke an operation, say, Dum-
myOp, passing z as a parameter, whenever z is updated. The synchronisation code can
associate an action with the start(DummyOp) event to read the new value of z. This tech-
nique is illustrated in Figure 4.14.

In this case the maintenance of the synchronisation variable, z, is dependent upon its
sequential counterpart. However, we have yet to see a need to employ such techniques and

so for the moment it is of hypothetical curiosity rather than of practical concern.

4.6 Summary

This chapter has introduced a synchronisation mechanism, Esp, that embodies the concepts
of the Sos paradigm. Through this mechanism, we have illustrated several benefits of Sos,
notably:

e Modularity is achieved by completely separating synchronisation code and variables
from sequential code and variables.

e The separation of synchronisation code and variables from sequential code and variables

elminates the need for synchronisation code to have unsafe access to instance variables.

?One possible reason why readers may think that num is required by the sequential code is to specify pre-
and postconditions [Mey92] on the operations. However, we show in Section 14.5 that it is possible to express

pre- and postconditions in the synchronisation part of a class.
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class Foo {
int  x;
X := current_time();

DummyOp(x);

}

DummyOp(int new x) { }
synchronisation
int  x;

start(DummyOp) — x := this_inv.new x;

}

Figure 4.14: Maintaining sequential and synchronisation variables in step under complex or

non-deterministic logic

The examples in Section 4.2.3 showed that several synchronisation policies which tradi-
tionally have been thought to require access to instance variables can be implemented

in terms of synchronisation variables instead.

e The many examples in this chapter show that Esp offers excellent expressive power.
In particular, the implementations of starvation-free versions of both the Shortest Job
Next scheduler and the Dining Phisohophers problem illustrate how Esp excels in the

areas of scheduling and liveness constraints.

o The examples in Section 4.2.1 showed that (i) synchronisation counters, (ii) the relative
arrival time of invocations, and (iii) scheduling predicates are forms of syntactic sugar.
As such, there are remarkably few constructs essential to Esp. This supports our
claim that Sos-based synchronisation mechanisms can achieve expressive power without

complexity or creeping featurism.

An interesting aspect of EsP is that it is both procedural and declarative, which permits
a graceful degradation of expressive power.

Finally, it is natural to assume that the expressive power of Esp might be at the ex-
pense of run-time performance. However, this need not be the case as we have outlined
some optimisation techniques in Section 4.4 which can reduce the run-time overhead of Esp

dramatically.

66



Chapter 5
Language Support for Esp

The previous two chapters presented the Sos paradigm and Esp (which embodies the concepts
of Sos) in a language-independent manner. This style of presentation was used in order to
avoid confusing the central concepts of SOos and EsP with the idiosyncrasies of a particular
language. This chapter now discusses the issues that arose when we added Esp to the Dee
language [Gro90]. There is nothing special about Dee that makes it particularly suitable to
act as a host language for Esp.! As such, most of the language-design issues discussed in this
chapter would be relevant if EsP were to be introduced to another object-oriented language.

One important topic missing from this chapter is how synchronisation code is inherited
in Dee. A discussion of this issue is deferred until Part IV which is devoted to the problems
associated with the use of inheritance in COOPLs.

Also missing from this chapter is a discussion of how we have implemented Esp on top of
Dee. Later, in Part III of this thesis, we show that a language can support not just Esp but
also generic synchronisation policies. We defer a discussion of implementation issues until

this other topic has been addressed.

5.1 A Brief Overview of Dee

Dee [Gro90] is an object-oriented language developed partly to experiment with the object-
oriented paradigm and partly for use as a teaching tool. All data types in Dee are classes,
including types such as integers, booleans and strings. Dee supports genericity—arrays, lists,
sets and so on are provided as generic classes.

The Dee compiler produces pseudo-code (pcode) for a hypothetical, stack-based machine,
and this pcode is then interpreted.

Dee was originally written to run on MSDOS. However, we ported Dee to UNIX and
extended the compiler to accept Esp. The combination of Dee and Esp is called “DEsp.”

!The main reason why we chose Dee as a base language for our prototype with was not due to any features
of the language itself, but rather because we had access to a Dee compiler that produced pcode. We felt it
would be easier to prototype and debug concurrency constructs in an interpreted pcode environment than in

a compiled environment. A discussion of the issues surrounding this decision can be found in Section 8.2.
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Like Dee, DEspP produces pcode.

5.2 Separation of the Synchronisation and Sequential Parts of

a Class

As in Esp, the keyword synchronisation is used to syntactically separate synchronisation
code and variables from sequential code and variables. Semantic checks in the compiler ensure

that synchronisation code does not access sequential code or variables, and vice versa.

5.3 Actions and Guards

In merging Esp with Dee, we wanted to make as few changes to the host language as possible
so we sought ways in which the core concepts of EspP could be implemented in terms of
existing language constructs.

We recognised that actions can be considered to be operations that have the following

three unusual characteristics:

(i) They are invoked automatically (at events).

(ii) In Esp, actions do not have names. Unfortunately, this prevents programmers from
being able to explicitly invoke actions. However, this is a purely syntactic issue and
alternative syntax could provide actions with names, thus allowing them to be invoked

like other operations.

(iii) Actions implicitly take a parameter—denoted in Esp as this_inv—that permits access

to information about the invocation for which the action is being executed.

Similarly, guards can be considered to be operations that return a boolean result. Like
actions, guards have the following properties: (i) they are invoked automatically by the run-
time system; (ii) they do not have names; and (iii) they implicitly take this_inv as a parameter.
Thus, the issues involved in treating guards as language-level operations are similar to those
in treating actions as language-level operations.

Being able to treat actions and guards as normal operations offers the benefit of making
it possible to inherit actions and guards. Also, while overloading a syntactic construct with
multiple semantics often results in complexity, in this case we feel that merging actions and
guards with operations actually simplifies the language.

However, in order to achieve this goal of treating actions and guards as normal operations,
it must be possible to treat “invocation” as a language-level type since actions and guards
need to explicitly take an invocation as a parameter. We defer discussion on language support
for invocations until Section 5.4. For the moment, accept that invocations are represented at
the language level by a type called Invocation.

The code in Figure 5.1 provides an example of the declaration of an action and a guard in

DEesp. In this example, the class has three operations (or “methods” in Dee terminology): a
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sequential operation called Bar and two synchronisation operations called a_Bar and g_Bar.
The map directive informs the compiler that the operation a_Bar is to be invoked whenever
the event arrival(Bar) occurs, and similarly operation ¢g_Bar is to be invoked as the guard of
Bar.

class Foo

public method Bar(...)
begin ... end

synchronisation

private method a_Bar(this_inv: Invocation)

begin ... end

private method g _Bar(this_inv: Invocation): Bool

begin ... end

map arrival(Bar) — a_Bar

guard(Bar) — g_Bar

Figure 5.1: Declaration of actions and guards in DEsP

The run-time system will create and initialise an Invocation object at the arrival(Bar)
event; this object will then be passed as a parameter to a_Bar and ¢g_Bar.

A Dgsp programming convention illustrated in this example is that if a synchronisation
operation is to be executed at an arrival event then its name is that of the corresponding

”

sequential operation with a prefix of “a_”. ”

Similarly prefixes of “s” and “t_” are used to

designate synchronisation operations executed at start and term events, respectively, and the

b

prefix “g_” is used to designate guards.

5.4 Invocations as Language-level Types

When, in the previous section, we discussed how DESP implements actions and guards in
terms of operations, we asked the reader to accept that an Invocation language-level type
existed. In this section we discuss the issues involved in representing invocations as language-
level types.

The main obstacle to having an Invocation data type is that there is no single type of
invocation. Rather, within a class, there are as many different types of invocation as there
are operations defined for that class. Since the operations defined within a class may all take

different numbers, and types, of parameters, an invocation for one operation is unlikely to

69



be interchangeable with an invocation for a different operation. This raises the issue of how
particular invocation types can be defined.

We discuss several possibilities:

e Represent Invocation as a Pascal-style variant record. (This approach is discussed in
Section 5.4.1.)

e Represent Invocation as a generic class that is instantiated upon operations. (This is

discussed in Section 5.4.2.)

e Have an Invocation class in which parameters are stored in an untyped list. (This is

discussed in Section 5.4.3.)

e Use an inheritance hierarchy to model different invocation types. (This is discussed in
Section 5.4.4.)

5.4.1 The Variant-record Approach

In a non object-oriented language, the different Invocation types of the operations of a re-
source could all be combined into a single variant-record type (which would be implicitly
declared by the compiler). However, this approach is not without its problems.

One problem is that, in many languages, variant records are not compile-time type-safe.
(However, if a variant record contains a “tag” field then it is possible to generate code for
run-time checking to ensure that accessed fields are compatible with a variant record’s current
“tag”.) It is possible to guarantee compile-time type-safety by imposing some restrictions so
that such variant records could be used only within certain language constructs. Mediators
[GC86] and CEiffel [L6h91], both of which represent invocations as variant-records, appear
to impose such restrictions, though little is said about this in papers on those languages.

Another problem with this approach is that an invocation would be “variant” not only
upon the operation invoked but also upon the class to which the operation belongs. For
example, several different classes may have, say, a Gel operation but the invocation of Get
for a bounded buffer may not be interchangeable with an invocation of Get for an array or
a hash table. Thus, an Invocalion variant-record would require two “tag” fields instead of
the usual one. A possible approach to keep the number of “tag” fields to one would be to
restrict access to an Invocation type to within a class; in effect, each class would have its own
private Invocation type that could not be accessed from outside that class. (CEiffel takes
this approach.) However, this would then mean that Invocation would not be first-class, i.e.,
there would be some restrictions on its usage. For example, it might not be possible to pass
an Invocation as a parameter to an operation of another object.

Another drawback of this approach is that while it might be suited to, say, Pascal or
C, it would not suit an object-oriented language since variant records themselves are not

object-oriented.?

20Qur argument that variant records are not object-oriented is as follows. If one considers classes to be
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Having considered these drawbacks of the variant record approach, we decided against

adding variant records to the DESP language as a means of supporting invocation types.

5.4.2 The Generic Class Approach

The Dee language provides support for generic classes. For example, in the following variable

declaration, the generic class List is instantiated upon the class Person.
var employees: List[Person]

One might hope that the guard and actions of operation Foo could take a parameter of
type “Invocation[Foo]”. However, to do this would require the ability of a generic class to be
instantiated upon operations, while the Dee language permits instantiation only upon classes.

One approach to overcome this mismatch between the generic class facilities that Dee
provides and those needed for this proposal would be to modify the definition of the language
to allow a generic class to be instantiated upon either operations or classes. However, this
approach would possibly result in a substantial increase in the complexity of the language
and the compiler.

Another approach would be to promote operations to the status of classes in their own
right. If this were done then the existing generic class facilities would be sufficient to permit
an Invocation class to be instantiated upon an operation. While this approach would be
feasible for languages that already confer class status upon operations, we were unwilling to
undertake the task of adding such capabilities to the Dee language, preferring instead to find

an alternative way that would not change the language in such a fundamental manner.

5.4.3 The Untyped List Approach

Invocations could be represented by a class such as that shown in Figure 5.2. This approach,
which is used in FEiffel|| [Car93], deals with the issue of different operations taking different
numbers/types of parameters by storing parameters in a list of Any (in DEsp all classes
conform to the base class Any and hence it is an untyped list).

However, such an approach would be inconvenient for programmers since access to pa-
rameters would not be by name, but rather by position in the list. Such access would, of
course, be error-prone. It also precludes type-checking of parameter access at compile time.
Instead, programmers would have to rely on run-time type-checking.

For these reasons we decided against using this approach in DEsP.

5.4.4 The Inheritance Approach

The final approach we consider—and the approach we have adopted in DEsSP—is to use a

hierarchy of classes to represent different invocation types.

the object-oriented replacement of record types, then class hierarchies are the object-oriented replacement of

variant records.
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class Invocation

inherits Any

public var arr_time: Int { arrival time of invocation }
public var OpName: String { name of invoked operation }

{ any other useful information }

public var Parameters: List[Any]

Figure 5.2: Invocation class that stores parameters as a untyped list

A base class, Invocation, is shown in Figure 5.3. This class includes some instance variables
that programmers may find useful for synchronisation.®> These instance variables will be
initialised by the run-time system when the run-time creates an Invocation object (at an

arrival event).

class Invocation

inherits Any

public var arr_time: Int { arrival time of invocation }
public var OpName: String { name of invoked operation }

public var Clientld: Int { ID of invoking process }

Figure 5.3: Base Invocation class in DEsP

The base class, Invocation, does not include any parameters because, as we have said
earlier, the number and type of parameters can vary from one operation to another. Instead,
programmers can subclass from Invocation and declare, within the subclass, instance variables
that correspond to parameters of an operation. Similarly, if programmers wish to have
synchronisation local variables for an operation then these can also be declared as instance
variables within a subclass of Invocation. We illustrate this subclassing of Invocation with

an example.

Alarm Clock (Revisited)

Consider the Esp implementation of the Alarm Clock problem shown in Figure 4.5 on page 51
of the previous chapter. The synchronisation code accesses the period parameter of operation
WakeUp. The synchronisation code also declares a variable, wakeup_time, local to invocations

of WakeUp. In translating this Esp code to DESP, we create a subclass of Invocation as

3Examples in the previous chapter have already illustrated the use of arr_time. The other instance variables
of the Invocation class—OpName and Clientld—are rarely of use when implementing synchronisation policies
per se. However, the information they contain can be printed in diagnostic messages at events; this can be

useful for debugging and also for pedagogical purposes to illustrate the event-based nature of Esp.
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shown in Figure 5.4. This subclass contains period and wakeup_time as instance variables.

The subclass also contains an operation to permit wakeup_time to be initialised.

class WakeUplnvocation

inherits Invocation

public var period: Int { copy of a parameter }

public var wakeup_time: Int { synchronisation local variable }

public method set_wakeup_time(Val: Int)
begin

wakeup_time := Val

end

Figure 5.4: The WakeUplnvocation class

With the Wake UpInvocation class written, we can now write the code for the AlarmClock
class. This class, shown in Figure 5.5, is a direct translation from the Esp version (Figure 4.5
on page 51). Note that the guard and arrival action of WakeUp take a parameter of type
Wake UpInvocation. The compiler will note that the period parameter of WakeUp has a
namesake in an instance variable of WakeUplInvocalion and will generate code to copy this

parameter at run-time.

5.4.5 Discussion

Unlike the variant record approach (Section 5.4.1) and the technique of accessing parameters
by their position in an untyped list (Section 5.4.3), using inheritance to model different invo-
cation types provides type-safe access to parameters. This approach also has the advantage
of not requiring extensive modifications to the host language, Dee, unlike the generic class
approach (Section 5.4.2).

However, the inheritance approach has its own disadvantage. For synchronisation code
to be able to access a parameter of an operation requires that a namesake of that parameter
be declared as an instance variable in a subclass of Invocation. In effect, the parameter is
declared twice: once in the signature of the operation and again as an instance variable in an
Invocation subclass. Such duplicate declarations are undesirable because of the possibility
that, through accidental error, the two declarations might not be identical. In particular, if
the name of the instance variable in the Invocation subclass is misspelt then the compiler will
assume that it is intended to be a synchronisation local variable rather than a copy of the
parameter. In such cases a program might compile but give a run-time error due to access
of the uninitialised instance variable of the Invocation subclass.

Luckily, programmers have some protection against this danger. For the compiler to fail

to detect a misspelling in the declaration of the instance variable of an Invocation subclass
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class AlarmClock

inherits Any

public method WakeUp(period: Int) begin end
public method Tick begin end

synchronisation

private method a_WakeUp(t: WakeUpInvocation)
begin
t.set_wakeup_time( t.period 4 term(Tick) )

end

private method g_-WakeUp(t: WakeUplInvocation): Bool
begin
result := term(Tick) >= t.wakeup_time

end

map arrival(WakeUp) — a_WakeUp
guard(WakeUp) — g_WakeUp

Figure 5.5: DEsP implementation of an Alarm Clock

but still successfully complete compilation would require that all accesses to this instance
variable be similarly misspelt. Such consistent misspelling is somewhat unlikely and so the
chances are that the compiler would report an error.

The problem could be corrected by introducing a language construct which would inform
the compiler that a particular instance variable of an Invocation subclass is to be a copy of
a parameter of an operation. However, this seems to be an inelegant approach. Later, in
Part III, we discuss how language support for generic synchronisation policies can solve this
problem in a more natural manner.

The reader may be concerned that concurrent programs will contain an overwhelming
number of Invocation subclasses. While we do not yet have enough experience of writing

DEesp programs to know for sure, we feel that this concern is misplaced for several reasons.

Firstly, it is likely that the majority of classes in a concurrent program will be sequential;
only a few classes will contain synchronisation code.

Secondly, of the few classes in a program that are synchronised, most are likely to im-
plement synchronisation policies that do not require synchronisation local variables (other
than arr_time which is maintained automatically) or access to parameters of invocations. For

these synchronised classes, the base Invocation class will suffice.

This leaves only a small fraction of classes within a program that need to utilise subclasses
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of Invocation to implement their synchronisation policies. Even among these classes, there
may be potential for reusing subclasses of Invocation.

For instance, the constructor operation of a bounded buffer might take a size parameter
that determines the capacity of the buffer. The synchronisation code of the buffer is likely to
need to access this size parameter and so the programmer will write a SizelInvocalion class
(as shown in Figure 5.6) for this purpose. Once Sizelnvocation has been written it can be
reused by other synchronised classes whose constructors also take a size parameter. (Such
classes might include hash and symbol tables, disk head schedulers and a dining table whose

capacity is not, as tradition has it, fixed at five philosophers.)

class Sizelnvocation

inherits Invocation

public var size: Int { copy of a parameter }

Figure 5.6: The Sizelnvocation class

5.5 Safe Access to Parameters

The Sos paradigm requires that synchronisation code have a safe way to access parameters
of invocations. One way mentioned in Section 3.5.1 was for the run-time system to arrange
for the parameters of an invocation to be copied when the invocation arrives. These pa-
rameter copies could be accessed by the synchronisation code, safe in the knowledge that
if the sequential body of an operation updated a parameter then this would not affect the
synchronisation code’s copy of that parameter.

We would have liked to have used this technique in Desp. Unfortunately, a “copy”
operation is not provided as standard in Dee classes, thus making it difficult for the run-time
system to copy parameters. Instead, the approach we have taken is for synchronisation code
and sequential code to share parameters. Ensuring that this sharing is safe has necessitated
the following restriction: synchronisation code can access parameters only of types Int, Bool,
String and Float. A look back at the numerous Esp examples presented in Section 4.2 will
show that the only parameters accessed by synchronisation code happen to be one of these
four basic types.* As such, it seems that this restriction will not be a hindrance in practice.

There are two unusual aspects of the classes Int, Bool, String and Float that make it safe
for parameters of these types to be shared.

The first is that these classes do not have any mutator operations, i.e., operations that

will change the state of the object. Rather, operations that apparently change the value of,

*The only exception to this is the Dynamic Priority Print Queue (Figure 4.8 on page 54) in which syn-
chronisation code accesses a parameter of type Groupld which is an enumerated type. However, enumerated

types are, in effect, integers.
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say, an Int object actually create a new Int object that contains the desired value and returns
that instead [Gro90]. (The old object will, if necessary, be garbage collected.)

The second unusual aspect of these classes is the restriction that subclasses of them cannot
be written. (This is a restriction that exists in Dee rather than being a restriction that we
introduced.)

The combination of these two unusual aspects of the classes Int, Bool, String and Float
guarantee that parameters of these types cannot be mutated and hence can be safely shared

by sequential code and synchronisation code.

5.6 New Language Constructs

The waiting and ezecuting constructs of Esp were added to the language as built-in functions
which return “Collection| (subtype of ) Invocation |”. “Collection” is a generic type, in Dee’s
standard library, which can be iterated over. As the existing Dee loop construct was somewhat
awkward to use, some new iterator loops were added as syntactic sugar, including the for
loop statement and the there_is_no predicate as illustrated in the Esp examples of Section 4.2.

The syntax of these DESP loop constructs is similar to their Esp equivalents. To illustrate
this, you can compare the DESP implementation of the Starvation-free, Shortest Job Next
scheduler in Figure 5.7 with the Esp version shown previously in Figure 4.6 on page 52. Aside
from the more verbose syntax, some small differences to note are as follows.

Firstly, in Esp the for loop and scheduling predicates implicitly declared their own loop
variable. In DEsp this variable must be declared explicitly.

Secondly, this_inv is, in effect, a keyword in Esp. However, since this is passed as a
parameter to guards and actions in DESP, it loses its reserved-word status and becomes a
“normal” parameter name. As such, programmers can refer to it by whatever name they
want. For example, in Figure 5.7 it is referred to by the shorter name .

Finally, since our presentation of Esp in Chapter 4 was language-independent, it did not
address the issue of how invocations might be represented at the language level. In hindsight
it should be clear to readers that the Esp pseudo-code representation of invocations was
akin to the variant-records approach discussed in Section 5.4.1. As already discussed in
Section 5.4.4, the approach adopted in DESP is to have a hierarchy of classes with Invocation
as its root. Thus the DEsp implementation of synchronisation policies that require either
access to parameters or the ability to maintain synchronisation local variables will necessitate
the writing of an appropriate subclass of Invocation. This is illustrated in the implementation
of the Starvation-free, Shortest Job Next scheduler in Figure 5.7, which makes use of the
LenInv class shown in Figure 5.8. As well as defining an instance variable, len, to provide
access to its namesake parameter, the LenlInv class also defines an operation, set_len to set the
value of this instance variable. This operation is called by the start(Print) action (operation

s_Print) to decrement the len of invocations that have been skipped over.
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class FairSJN inherits Any
cons make(...) { constructor }
begin ... end
method Print(fileName:String len: Int)
begin ... end
synchronisation
method s_Print(t: LenInv)
var p: Lenlnv
begin
for p in waiting(Print) do
if p.arr_time < t.arr_time then p.set_len(p.len — 1); endif;
end;

end

method g_Print(t: LenInv): Bool
var p: Lenlnv
begin
result := (ezec(Print) = 0) and (there_is_no(p in waiting(Print):
p.len < t.len or p.len = t.len and p.arr_time < t.arr_time));

end

map start(Print) — s_Print

guard(Bar) — g_Print

Figure 5.7: Starvation-free, Shortest Job Next scheduler in DEsp

class Lenlnv

inherits Invocation
public var len: Int { copy of a parameter }

public method set_len(Val: Int)
begin
len := Val

end

Figure 5.8: The LenlInv class (used in the starvation-free SJN scheduler).
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5.7 “Super” Calls are Unsynchronised

Consider a base class that defines an operation, Foo, and a guard for that operation. A sub-
class will inherit both operation Foo and its guard, and can re-implement these independently
of one another. For example, if a subclass re-implements operation Foo then the guard will
apply to this re-implemented version of Foo in the subclass rather than the base class version
of Foo. A consequence of this is that any “super” calls to the version of Foo in the base class
will not be synchronised.

The details of this may seem confusing at first, but the end result is intuitive semantics
for “super” calls. For example, consider a subclass that inherits the guard “ezec(¥oo) = 0”

for operation Foo, and re-implements Foo in the following manner:

method Foo(...)

begin
super.Foo(...);’

// some new code

end

If the guard had applied to both the subclass version and the base class version of Foo then
the “super” call would have resulted in deadlock due to the nested attempt to gain exclusive
access to Foo. As such, it is vital that the “super” call be unsynchronised.

Note that language rules preclude the possibility of a client making a “super” call upon a
service object; thus there is no danger of a client using “super” to bypass the synchronisation

constraints of a service object.

5.8 Implementation and Run-time Overhead of Synchronisa-

tion

Later, in Part I1I of this thesis, we extend DESP to provide support for generic synchronisation
policies. There is some overlap between the implementation issues of concern to Esp and those
of concern to generic synchronisation policies. As such, we defer discussion of implementation
issues until Part III when we can examine all such issues together rather than have such a
discussion split in two parts with some repetition.

We also defer until Part III an analysis of the run-time overhead of synchronisation
policies implemented in Esp. This is for two reasons. Firstly, this analysis depends on the
discussion of our prototype implementation. Secondly, generic synchronisation policies make
possible an interesting optimisation technique that greatly reduces the run-time overhead of

synchronisation.

®In DEsP, “super” calls are made by prefixing the operation to be invoked not with “super” but with the
name of the parent class. However, in this thesis we denote such calls with “super” since this is more likely

to be familiar to readers.
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In the meantime, all we will say about the run-time overhead of synchronisation policies
implemented in Esp is that, for an unoptimised implementation of Esp, this overhead can be
in the order of several hundred CPU instructions, i.e., it can take several hundred instructions
more to invoke a synchronised operation than it takes to invoke an unsynchronised operation.
This overhead makes (unoptimised implementations of) Esp unsuitable for use in applica-
tions that utilise fine-grained concurrency because this overhead of synchronisation would
counteract the potential speed-up of concurrent execution. However, Esp may be useful in
applications that utilise coarse-grained concurrency, i.e., applications in which processes do
a lot of independent computation and synchronise infrequently.

Of course, optimisation techniques that significantly reduce the overhead of synchroni-
sation may make EsP suitable for use in applications that utilise medium- and fine-grained

concurrency.

5.9 Summary

The Sos paradigm consists of four concepts:

(i) Actions executed at events.

(ii) A means of causing an invocation to start executing. Esp employs guards for this

purpose.
(iii) Access to information about invocations.

(iv) A separation between the sequential code/variables of a class and its synchronisation

code/variables.

These concepts have been incorporated into the Dee language in the following manner. The
introduction of a single new construct, map, enables both (i) actions and (ii) guards to
be expressed as operations. Support for (iii) access to information about invocations is
provided via the combination of a library class, Invocation, and the new language construct
of waiting [ executing expressions. Finally, a new keyword, synchronisation, enforces (iv) the
separation of sequential code/variables from synchronisation code/variables.

Thus, surprisingly few changes were required in order to introduce the Sos paradigm to
the Dee language.® Moreover, the DESP language is backwards compatible with Dee source
code. This is important since it means that DESP programmers can utilise existing libraries
of Dee classes.

By introducing only a few changes to the host language and also maintaining backwards
compatibility with existing source code libraries, we feel we have shown that the concepts of

the Sos paradigm can be applied relatively easily to an object-oriented language.

5We did, of course, also introduce synchronisation counters and scheduling predicates but, as shown in
Section 4.2.1, these are simply forms of syntactic sugar, rather than being a core part of the Sos paradigm or

Esp. Even counting these forms of syntactic sugar, the changes introduced to the host language were few.
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Chapter 6

Related Work and Summary of

Contributions

In Part IT of this thesis we have presented the Sos paradigm in a top-down fashion. We
started with a discussion of the core concepts of the paradigm; then introduced a sample
synchronisation mechanism, Esp, that embodied these concepts; finally we added EspP to a
host language in order to show that the concepts of the Sos paradigm can be introduced to
a language in a straight-forward manner.

The bulk of this chapter, which draws Part II of the thesis to a close, is devoted to a
discussion of related work. We start off in Section 6.1 by comparing the Sos paradigm with
synchronisation paradigms proposed by other researchers. Aside from Esp, we know of just
one other synchronisation mechanism that (almost) fully embodies the concepts of the Sos
paradigm. We review this mechanism, Mediators, in Section 6.2. Then in Section 6.3 we dis-
cuss how support for the concepts of S0s can be found, albeit piecemeal, in a variety of other
synchronisation mechanisms. This chapter closes with a summary of the contributions of the
Sos paradigm and a discussion of some areas for future work, in Sections 6.4 and Section 6.5,

respectively.

6.1 Other Paradigms for Synchronisation Mechanisms

Most papers about synchronisation in COOPLs concern themselves with specific synchroni-
sation mechanisms. The literature is quite sparse on synchronisation paradigms—especially
ones that are comparable to Sos. However, we did come across two such paradigms; we

discuss them in Sections 6.1.1 and 6.1.2.

6.1.1 Synchronising Actions

The Synchronising Actions (SA) paradigm [Neu91] contains concepts that correspond approx-
imately to the core concepts of Sos. Thus, it makes sense to compare these two paradigms

on the basis of these concepts.
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The first concept of the Sos paradigm is that of events and the code (actions) executed
at them. SA is also event-based. Code executed at a start event is, in the parlance of SA,
a pre_action and code executed at a term event is a post_action. However, SA does not
recognise the arrival event and, consequently, does not permit programmers to associate an
action with it. This limits the expressive power of SA. For example, in Section 4.2.2 we
showed Esp implementations of some synchronisation policies—starvation-free versions of
both the Shortest Job Next scheduler and the Dining Philosophers problem, and the Alarm

Clock problem—that utilised arrival actions. These cannot be implemented easily in SA.

The second concept of SOs is the requirement that a synchronisation mechanism must

provide a way to cause an invocation to start executing. SA has a similar requirement.

The third core concept of the Sos paradigm is that synchronisation code should have
access to information about invocations. Sos actually makes five requirements (discussed in
Sections 3.3.2 and 3.5) on the access that synchronisation code has to parameters. These
requirements are made in order to ensure modularity, safety and expressive power. The SA
paradigm also grants synchronisation code access to invocations. However, it does not place

any requirements on the type of such access.

The final concept of Sos is that synchronisation code and variables should be separated
from sequential code and variables. There are two reasons for this requirement. Firstly, it is
unsafe for synchronisation code to access the instance variables of an object. Secondly, it is
also unnecessary since synchronisation code can maintain whatever variables it needs itself

without sacrificing expressive power.

Like Sos, SA requires that synchronisation code and variables be separated from sequen-
tial code and variables. Neusius (the designer of the SA paradigm) is aware that it is unsafe
for synchronisation code to access instance variables.! However, there is nothing in the pre-
sentation of the SA paradigm to indicate an awareness that such access is also unnecessary.
As such it is not clear that Neusius fully appreciates the nature of synchronisation variables.
In particular, although SA embraces the concept of synchronisation variables of an object,
there is no explicit support for the other types of synchronisation variables: parameters and

local variables.

In summary, the SA paradigm contains the same concepts as the Sos paradigm. However,

it does not embrace them fully and thus is not as powerful.

In drawing this comparison to a close, we note that the SA paradigm contains two re-
strictions. The first restriction is a synchronised object must dedicate a thread of control to
executing its synchronisation code. The second is that invocations are made via message-

passing. Neither of these restrictions are in Sos.

!The awareness that it is unsafe for synchronisation code to access instance variables is indicated by the
following comment about guards in the Guide language: “[A guard] uses instance variables that represent the
internal state of the object. A programmer has to consider the consistent change of these variables within the
[body of an operation]” [Neu91, pg. 122].
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6.1.2 Thomas’s Generic Model

Thomas [Tho92] proposes a paradigm for synchronisation mechanisms. Unfortunately, he

neglects to name it; instead he just refers to it as a “generic model.”

As with SA, we use the core concepts of the Sos paradigm to compare Thomas’s generic
model (TcM) with Sos.

The first concept of Sos is that of actions executed at events. T'GM recognises the exis-
tence of the three events—arrival, start and term. However, it makes the restriction that a
synchronisation mechanism can associate an action with only one of them. No justification

is offered for this restriction which limits expressive power.

The second concept of SOs is that a synchronisation mechanism must have a construct to
cause an invocation to start executing. SOs does not make any restriction about what form
such a construct might take. TGM is more restrictive, requiring that guards be employed for
this purpose.

The third concept of Sos is the requirement that synchronisation code have access to

information about invocations. TGM does not have a similar requirement.

The final concept of Sos is the requirement that synchronisation code and variables be
separated from sequential code and variables. TGM does not make any such requirement.
Indeed, it explicitly states that synchronisation code should have access to the instance
variables of an object. This requirement of T'GM is made in the mistaken belief that access
to instance variables is required in order to implement some synchronisation policies. This
access is unsafe since TGM does not take any steps to ensure that the synchronisation code

accesses instance variables only when they are in a consistent state.

In summary, it is clear that TaM is extremely limited in comparison to Sos. Its poor
support for events coupled with its lack of support for access to information about invocations
results in limited expressive power, and its access to instance variables is unsafe. In closing,
we note that TaMm has a restriction in common with SA: it specifies that a synchronised

object must dedicate a thread of control to executing its synchronisation code.

6.2 Mediators: A Synchronisation Mechanism that Embodies
(Most of) the Sos Paradigm

In this thesis we have presented a sample synchronisation mechanism, Esp, that embodies all
the concepts of the Sos paradigm. We are not aware of any other existing synchronisation
mechanism that also embodies all the concepts of Sos. However, one mechanism, Mediators
[GC86], comes quite close in doing so—much closer than any other mechanism of which we
are aware. In this section we give an overview of the Mediators mechanism and then discuss

how it relates to Sos and Esp.
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6.2.1 An overview of Mediators

The Mediators mechanism is quite complex. In order to communicate the important ideas of
Mediators without its complexity, this section presents a stripped-down version of Mediators.
The syntax we use here is based on that used throughout this thesis and in some places is
quite different to that employed in Mediators. For readers who are concerned about such
issues, these differences in syntax can be found in Section 6.2.2, along with a discussion of

some of the more complex features of Mediators.

Mediators separate synchronisation code and variables from sequential code and variables.
This separation is indicated by the keyword mediator in a manner similar to the way we

have used the keyword synchronisation.

A mediated (synchronised) object has its own thread dedicated to executing its synchro-
nisation code. This thread causes an invocation to start executing via one of the statements:
spawn or exec. The exec statement causes the mediator thread to service the invocation
itself, while the spawn statement forks off a thread to service the invocation asynchronously.
When an invocation has been serviced, a release statement must be executed. This returns

results to the client and removes the invocation from the mediator.

Mediators is built around the concept of guarded commands [Hoa78, Dij75]. In brief, a
guard can be associated with a list of commands, i.e., statements. The commands will be

executed whenever the guard becomes true. The notation used to indicate this is as follows:

guard — commands

This notation is similar to that used in Sos to indicate that an action should be executed at
an event. Indeed, Mediators treats arrival and term as conditions rather than events. (As

we discuss later, there is no concept of a start condition in Mediators.)

The arrival condition is true if there is a pending invocation that has not been fired, i.e.,
not had a guarded command executed on its behalf. This concept of a condition being fired
may sound strange but, in effect, it means that the arrival condition only happens once for
a particular invocation. This is akin to there being only one arrival event for an invocation
in the Sos paradigm. Similarly, the term condition is true only if there is a terminated

invocation that has not been fired.

The arrival and term conditions implicitly take a parameter akin to this_inv in Esp.
Since arrival and term are conditions, they may be combined with other conditions. It is
these combined conditions that are most often used as the guards in guarded commands.

The commands of a guarded command are executed in mutual exclusion. (This is akin
to Sos where actions are executed in mutual exclusion.)

We give some examples to illustrate the Mediators concepts we have already discussed

and to introduce some additional concepts.
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Basic Readers/Writer Policy

The code in Figure 6.1 shows the basic readers/writer policy implemented in Mediators. The
mediator employs an init clause to initialise a variable, NumReaders, which is maintained

explicitly since Mediators does not automatically maintain synchronisation counters.

class ReadersWriter {
Read(...) { ... }
Write { ... }
mediator
int NumReaders;

init NumReaders := 0; end _init
arrival(Write) and NumReaders = 0 — { exec this_inv; release this_inv; }
arrival(Read) — { NumReaders ++; spawn this_inv; }

term(Read) — { NumReaders ——; release this_inv; }

Figure 6.1: Mediator implementation of the readers/writer policy

Recall that the exec statement, which is used to service invocations of Write, causes the
mediator thread to service the invocation itself. Hence, whenever a Write invocation is being
serviced, the mediator is, in effect, blocked and there is no possibility of any other guards being
evaluated or their commands being executed. Thus, in terms of synchronisation counters,
the constraint “ezec(Write) = 0”7 is implicit in the guard of every guarded command. This

means that the effective guard for Write is:
arrival(Write) and NumReaders = 0 and ezec(Write) = 0
Similarly, the effective guards for Read are as follows:

arrival(Read) and exec(Write) = 0
term(Read) and ezec(Write) = 0

This is clearly an example of arrival being used in a manner analogous to an Esp-like guard.
When such a guard becomes true then an Esp-like start event is implicit and any code
immediately preceding an exec or spawn statement is analogous to an Esp-like start action.

Note that because invocations of Read are serviced asynchronously, via the spawn state-
ment, a term(Read) guarded command is required in order to perform post-processing of such
invocations. A term(Write) guarded command is not required since Write invocations are
serviced synchronously; hence any necessary post-processing statements are written directly

following the exec statement.
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Shortest Job Next scheduler

Mediators does not automatically maintain lists of invocations over which synchronisation
code can iterate. Instead, programmers have to maintain such data-structures themselves.

This is illustrated by the code in Figure 6.2 which implements a Shortest Job Next scheduler.

class SJN {

Print(int len, ...) { ... }
mediator

boolean busy;

Queue queue;

init busy := false; queue := empty_queue; end_init
arrival(Print) — { queue.insert(this_inv, this_inv.len); }
term(Print) — { busy := false; release this_inv; }

not queue.empty() and not busy —

{ foo := queue.remove_head(); busy := true; spawn foo; }

Figure 6.2: Mediator implementation of the Shortest Job Next scheduler

Whenever an invocation arrives, it is inserted into a queue that is maintained by the
programmer. Items are removed from the queue and serviced whenever the following guard

is true:
not queue.empty() and not busy

The boolean variable busy denotes whether or not an invocation is currently executing the
Print operation.

This example demonstrates that any condition can serve as a guard, not just those that
contain arrival or term. This example also illustrates that a guard consisting of just arrival

(i.e., not combined with any other conditions) is analogous to an Esp-like arrival event.

Alarm Clock

The readers/writer example illustrated how arrival can be combined with other conditions
and used in a manner analogous to an Esp-like guard and start event. Then the SJN example
showed how it can be used in a manner analogous to an Esp-like arrival event. However, the
arrival condition cannot be used for both these purposes at the same time. This restriction
results in an unusual implementation of the Alarm Clock problem, as shown in Figure 6.3.
A synchronisation variable, now, is used to record the passage of time. This is initialised

to zero and incremented for every invocation of Tick. Fach invocation of WakeUp has its own

85



class AlarmClock {
WakeUp(int period) { }
Tick { }
mediator
int wakeup_time local to WakeUp;
int now;

init now := 0; end _init
arrival(WakeUp) — { this_inv.wakeup_time:= now + this_inv.period; spawn this_inv;}
term(WakeUp) and now >= this_inv.wakeup_time — { release this_inv; }

arrival(Tick) — { now ++; exec this_inv; release this_inv; }

Figure 6.3: Mediator implementation of the Alarm Clock policy

synchronisation local variable,? wakeup_time. The value of this is calculated when a WakeUp
invocation arrives. Having used the arrival(WakeUp) condition to achieve this, the mediator
cannot delay the start of execution of the invocation (unless it maintained a queue of pending
Wake Up invocations and added it to that) so it starts it immediately and instead delays its

termination by combining the following constraint onto the term(WakeUp) guard:

now >= this_inv.wakeup _time

6.2.2 Further Details of Mediators

The discussion in Section 6.2.1 presented a simplified version of Mediators in order to com-
municate its important ideas without its complexity. This section briefly mentions some of
the other features of Mediators, and indicates important differences between the pseudo-code
notation we have used in discussing Mediators and the actual Mediators syntax. Readers not
interested in Mediators can skip this section as it is intended primarily as an aid to those
who may be considering reading the original Mediators paper [GCS86].

The Mediators equivalent of this_inv is denoted by a variable of type client_process_id. As
the type name suggests, this is actually a reference to a process rather than an invocation.
However, in a mediated object there is a one-to-one mapping between client processes and
client invocations; hence a reference to a client process is synonymous with a reference to
the current invocation by that client. Programming examples in the Mediators paper declare

variables of type client_process_id with names such as ¢ or 7. Access to information about an

2The Mediators paper [GC86] states that synchronisation local variables are supported. Unfortunately, it
neglects to indicate what syntax should be used to declare them. We declare them using the same syntax as

used in Esp.

86



invocation is by means of the construct job(i). For example, a parameter, length, is accessed
as job(i).length while the service field indicates the name of the invoked operation.

The syntax of arrival (req in Mediators terminology) and term conditions is also different
to what we have indicated in Section 6.2.1. These conditions are parameterised not by the
name of an operation but rather by a a client_process_id variable.

The following example illustrates these syntactic differences. The guarded command

below is written in the pseudo-code notation used in the examples in Section 6.2.1:
arrival(Foo) — stmt list

The real Mediators syntax for the above is as follows:
req(i); job(i).service = Foo — stmt list

Note that the semicolon after “reg(i)” should be read as a boolean and operator.
In Mediators, guarded commands are not written free-style as shown in the examples in

Section 6.2.1, but rather are enclosed in a cycle construct which takes the form:

cycle
guard; — stmt list;
O
guard, — stmt list,
O

O
guard,, — stmt list,,

until condition;

This cycles (i.e., loops) continuously, executing guarded commands until its condition eval-
uates to true. A translation of the examples of Section 6.2.1 into Mediators syntax would
place the guarded commands inside a cycle construct with a false condition.

In Section 6.2.1 we said that a mediated object has its own thread dedicated to executing
its synchronisation code. Actually, a mediated object can have several threads executing its
synchronisation code. The code for each thread consists of a cycle construct and they are

separated by “//”. However:

“Only one thread of control is active at a time. The active control block can change
only when guards are evaluated. This creates mutually exclusive execution of the

statement lists between guard evaluations” [GC86, pg. 473].

Grass and Campbell go on to state that the introduction of multiple threads does not intro-
duce any extra power. Rather multiple threads are available in the belief that they make it

easier to implement some synchronisation policies:
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“It is possible to rewrite [multi-threaded mediator code] as one large [single-
threaded cycle construct]. The resulting [code] is considerably more bulky and
actually less clear” [GCS86, pg. 474].

We disagree with this assessment. The readers/writer, Shortest Job Next and the Alarm
Clock examples in Section 6.2.1 are all implemented using a single thread. If these imple-
mentations are expressed in real Mediators syntax then none of them are longer (in lines of
code) than the multi-threaded versions of the examples in the Mediators paper [GC86]. In
fact, two of them are shorter. We also happen to find the single-threaded versions easier to

understand but this could be a subjective preference for one programming style over another.

6.2.3 Discussion

Having presented an overview of the important concepts of Mediators, we now discuss how
it relates to the Sos paradigm and the Esp synchronisation mechanism.

One of the core concepts of Sos is the requirement that a synchronisation mechanism
has a way to cause an invocation to start executing. Mediators provides two: the exec and
spawn statements.

A second core concept is the requirement that synchronisation code and variables be
separated from sequential code and variables. Mediators satisfies this requirement and in
doing so provides programmers with the ability to declare synchronisation variables of the
object and also synchronisation variables that are local to invocations.

A third core concept is that a synchronisation mechanism should have access to informa-
tion about invocations. Sos actually makes five requirements regarding such access. These

requirements, and how Mediators addresses them, are as follows:
1. All the information about an invocation, that a synchronisation mechanism has access
to, should be grouped together as a unit.

The expression “job(i).foo” can be used to access a parameter or a synchronisation local
variable, foo, from the invocation denoted as job(i). Similarly, “job(i).service” can be
used to determine which service (operation) is being invoked. Thus, it is clear that

job(i) groups together information about an invocation.

2. An action should have access to information about the invocation for which it is being

executed.

Mediators does not support events and actions per se, but rather is based on the concept
of guarded commands which are similar in some ways. These guarded commands have

access to such information.
3. Programmers should be able to declare synchronisation variables local to invocations.

Mediators provides this ability.
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4. It is dangerous for synchronisation code to access the parameters of an invocation
while they were being updated by sequential code. A synchronisation mechanism must

provide some means to prevent such dangerous access.

The paper on Mediators does not explicitly address this issue. However, it is possible
that an implementation of Mediators might address it satisfactily as a side-effect of the
implementation approach. For example, the run-time system might provide synchro-
nisation code with a copy of parameters. Alternatively, the host language might make
a restriction that the only type of parameters that can be accessed by both sequential
code and synchronisation code are those that are declared to be read-only (akin to “in”

parameters in Ada).

5. Information about invocations should be maintained in a list /collection over which syn-
chronisation code can iterate in order to compare (and, if need be, update) information

about invocations.

Mediators provides this capability. As was illustrated by the Mediators implementation
of the Shortest Job Next scheduler in code of Figure 6.2, programmers are responsible
for maintaining lists of invocations themselves. This is different from Esp in which the
run-time system automatically maintains lists of waiting and executing invocations.
The difference between the two approaches is one of ease of use. Esp performs more

“housekeeping” work in this regard, thus relieving programmers of the burden.

The final core concept of the Sos paradigm is that of event-based programming. Mediators
does not support this, per se. However, it does support guarded commands which are similar
in some respects, as we now discuss.

Mediators’ term condition can be used in a manner analogous to the term event of Esp. If
Mediators’ arrival condition is the sole condition in a guarded command then it is analogous
to the arrival event in Esp. Alternatively, if Mediators’ arrival is combined with other
conditions then it can be used in a manner that is analogous to the start event in Esp. Thus,
the three events of Esp (arrival, start and term) can be simulated via guarded commands—
but not all at the same time since Mediators’ arrival condition is overloaded to provide either
the arrival event or the start event. This limitation effectively cripples Mediators support
for event-based programming.

Since Mediators’ guarded commands cannot effectively emulate event-based program-
ming, the important issue then becomes whether guarded commands offer an effective al-
ternative instead. After all, one might reason, while Mediators is deficient in its support
for event-based programming, it does offer some features not found in Sos. Perhaps these
facilities unique to Mediators gives it some expressive power that SOs lacks. Examples of two

features unique to Mediators are as follows:

e S0s permits actions to execute only at events. Mediators permits guarded commands

to execute at any condition, not just those that denote events. This is illustrated in the
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Mediators implementation of the Shortest Job Next scheduler (Figure 6.2 on page 85)

where code is executed at the condition “not queue.empty() and not busy”.

e The Esp mechanism employs guards to trigger the transition from arrival to start
events. This is the only situation where guards can be used. Guards cannot, for
example, be associated with a term event. Mediators, on the other hand, does permit
this, as is illustrated in the implementation of the Alarm Clock problem (Figure 6.3 on

page 86).

However, in both these cases the features unique to Mediators are being used to compensate
for the lack of proper support for event-based programming. There is nothing to suggest that

these features offer any power, above that of Sos, useful for the purpose of synchronisation.

6.2.3.1 Comparison of Esp and Mediators

Both Esp and Mediators offer excellent expressive power. However, Esp offers two advantages
over Mediators.

The first is simplicity. The Sos paradigm, which forms the basis for Esp, is composed
of just four concepts. Mediators, on the other hand, contains a multitude. Like Sos, it
(i) separates synchronisation code and variables from sequential code and variables. Sos
requires that a construct be provided to cause invocations to start executing; Mediators
provides both (ii) spawn and (iii) exec for this purpose. (These are significantly different
to one another since the latter implicitly adds a constraint to the conditions of all guarded
commands.) Like Sos, Mediators provides (iv) access to information about invocations.
Mediators provides guarded commands in which two distinct types of conditions can be used:
(v) “normal conditions” and (vi) those that can be fired just once, i.e., arrival and term.
Finally, Mediators offers (vii) multi-threading (as briefly mentioned in Section 6.2.2), even
though it does not offer any extra power over single-threaded Mediator code [GC86, pg. 474].
Thus, Mediators contains almost twice as many concepts as SOs.

The second area in which Esp has an advantage over Mediators is clarity and conciseness
of code. The Mediators implementations of policies such as basic Readers/Writer, Dining
Philosophers, Alarm Clock and Shortest Job Next scheduler [GC86] are typically seven times
longer (in terms of lines of code) and considerably less intuitive than the equivalent Esp

implementations.

6.3 Support for Individual Concepts of the Sos Paradigm in

Other Synchronisation Mechanisms

As Section 6.2 showed, the Mediators synchronisation mechanism embodies almost all of the
Sos paradigm. Aside from Esp, which is fully compliant with SoOs, we are not aware of any

other synchronisation mechanisms that comes so close to embracing all the concepts of Sos.
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However, the concepts of S0s can be found piecemeal in other synchronisation mecha-

nisms, albeit sometimes implicitly, as we discuss in Sections 6.3.1 to 6.3.4.

6.3.1 Causing Invocations to Start Executing

One of the four concepts of the Sos paradigm is that a synchronisation mechanism has a
way to cause an invocation to start executing. Fvery synchronisation mechanism employs a
mechanism to do this and thus every synchronisation mechanism contains at least this one

concept of the Sos paradigm.

6.3.2 Events and Actions

The Sos paradigm is event-based and specifies that code, referred to as actions, can be
executed at events.

The most common form in which events appear in synchronisation mechanisms is probably
in the guise of synchronisation counters. These are simply counts of how often particular
events have occurred and they are maintained by trivial actions executed automatically by
the run-time system. However, most counter-based mechanisms do not provide support for
programmer-specified actions to be executed at events.

The semantics of Path Expressions have been defined in terms of the start and term syn-
chronisation counters [McH89] [Cam83] (the arrival counter is not required in the definition).
Indeed, it has been proposed that Path Expressions be implemented via these two synchro-
nisation counters [McH89]. Thus, since synchronisation counters are event-based, it follows
that Path Expressions are also event-based. However, Path Expressions only embody two of
the three events. Like several synchronisation mechanisms that offer programmers direct use
of synchronisation counters, Path Expressions do not offer programmers the ability to specify
actions to be executed at events.

Finally, synchronisation mechanisms based on Enabled-sets operate by permitting a state
transition (from one enabled-set to another) to occur when servicing invocations. Such state
transitions are a form of event-based programming, although there is only one state transi-
tion/event per operation rather than the three that Sos defines.

We feel that the inability of programmers to specify actions at each of the arrival, start
and term events limits expressive power since it precludes the possibility of maintaining
synchronisation variables. The utility of actions at these events can be seen from a brief look

back at the Esp implementations of synchronisation policies in Section 4.2.

6.3.3 Separation of Synchronisation Code and Data from Sequential Code
and Data

Partial separation between synchronisation code/data and sequential code/data can be found

in many synchronisation mechanisms.
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Synchronisation counters used by themselves in guards provide a full separation. How-
ever, several guard-based synchronisation mechanisms, such as Guide and DRAGOON, permit
guards to access instance variables along with synchronisation counters. Such access to
instance variables destroys the strict separation. Not only because synchronisation code is
accessing what are apparently sequential variables but also because these variables are usually
synchronisation variables that happen to be implemented as sequential (instance) variables
and the code to maintain these synchronisation variables is mixed in with the sequential code
of operations.

Even in modular synchronisation mechanisms that forbid synchronisation code to access
instance variables, the separation between synchronisation code and sequential code can
be lost. As previously discussed in Section 2.1.4, this often happens if a synchronisation
mechanism has limited expressive power and hence needs to combine synchronisation code
with sequential code in order to implement some policies beyond its native capabilities.

The Eiffel|| language places its synchronisation code into a single operation, Live. In this
way, it aims to separate synchronisation code from sequential code. However, here too the
separation is not complete since the code in Live can access instance variables. What makes
Eiffel|| (and other languages that place synchronisation code into a single operation or “body™)
interesting is that while full separation is not enforced by the language, it can be achieved
by programmer convention. For example, instead of implementing synchronisation variables
as instance variables, they could be declared as variables local to Live and maintained inside
this synchronisation operation rather than being maintained inside the bodies of sequential
operations.

A lack of separation between synchronisation code and sequential code brings with it
several disadvantages.

Firstly, it can be more difficult to read and maintain code that does not separate different
types of code from one another.

Secondly, as we will argue in Part III of this thesis, a lack of separation between synchro-
nisation code and sequential code precludes the possibility of language support for generic
synchronisation policies.

Finally, as we will shown in Part IV of this thesis, a lack of separation between synchro-

nisation code and sequential code can exacerbate the problems associated with inheritance

in COOPLs.

6.3.4 Access to Information about Invocations

It is commonly thought that a synchronisation mechanism needs access to different types of
information in order to be expressively powerful. However, we showed in Section 3.6.2 that all
this information is available from a single source: the invocation. The Sos paradigm requires
that a synchronisation mechanism have access to information about invocations. Actually,
the Sos paradigm is rather particular about the kind of access granted and makes a total of

five requirements in order to ensure expressive power and modularity.
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As already discussed in Section 6.2.3, Mediators satisfies four of the five requirements.
The one requirement Mediators fails to meet is to guarantee that synchronisation code will
q g y

not access a parameter while it is being updated by sequential code.)

Most other synchronisation mechanisms fare less well against the requirements that Sos

makes regarding access to information about invocations.

For instance, many synchronisation mechanisms do not consider invocations to be the
primary source of information and hence do not group information about an invocation as
a unit. Instead, they provide piecemeal access to some derivative types of information. An
example is Path Expressions [CH73] which does not have a construct akin to Esp’s this_inv

for accessing, say, parameters.

The Rosette language implements operation invocations via message passing and each
object has its own mailbox to store pending messages. Similarly, the Synchronising Actions
(SA) paradigm specifies that operation invocations are implemented via message-passing and
objects have their own mailbox to which synchronisation code has access. The mailbox of
pending messages meets two requirements of Sos regarding invocations: (i) information about
an invocation (message) should be grouped as a unit, and (ii) pending invocations should
be held in a collection over which synchronisation code can iterate. However, in papers on
Rosette [TS89] and SA [Neu91], there is not a single example illustrating synchronisation
code either accessing information contained in a message or iterating over the messages in
the mailbox. As such, it appears that the designers of Rosette and SA do not recognise
invocations (messages) as being a primary source of information. Also, while Rosette and
SA satisfy two SOs requirements regarding access to information about invocations, they do
not satisfy all the requirements. For example, they do not provide the ability to declare

synchronisation local variables.

The Eiffel|| language provides a class called REQUEST that is used to store information
about pending invocations. Papers on Eiffel||’s synchronisation mechanism generally do not
show synchronisation code directly accessing the fields of a REQUEST. This is not due to a
restriction of access but rather because synchronised classes inherit from the class PROCESS
which provides a set of utility operations for manipulating the list of pending REQUESTs.
However, the support that Eiffel|| provides for access to information about invocations is not
without limitations. One limitation is that synchronisation code must access parameters not
by name but rather by position within an untyped list. As discussed in Section 5.4.3, this
approach is error-prone. Another limitation is that there is no facility for programmers to

declare their own synchronisation variables local to invocations.

As previously mentioned, the Sos paradigm shows that all the information thought to
be required for good expressive power is available from the primary source of invocations.
By failing to provide easy and comprehensive access to information about invocations, many

synchronisation mechanisms have limited expressive power.
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6.4 Contributions of the Sos Paradigm

In this section we summarise the benefits that the Sos paradigm offers.

6.4.1 Safe Access to Instance Variables

As discussed in Section 2.2, it is commonly believed that access to the instance variables of
an object by its synchronisation code is needed in order to implement many synchronisation
policies. This introduces a problem: synchronisation code must not read an instance variable
while that variable is being updated by an operation, otherwise the synchronisation code
might see the variable in an inconsistent state.

Searching the literature for synchronisation policies that apparently require access to in-
stance variables in order to be implemented unearths policies such as the Bounded Buffer,
the Dining Philosophers and the Disk Head Scheduler. We have also introduced another
such policy: the Dynamic Priority Print Queue. We have implemented all of these in Sec-
tion 4.2.3 and in each case the so called “instance” variables in question have turned out to
be synchronisation variables. Thus we have backed up our claim, made in Section 3.4, that,
in practice, there is no overlap between an object’s instance variables and its synchronisation
variables. In providing support for synchronisation variables, the Sos paradigm has resolved

the problem of synchronisation mechanisms having unsafe access to instance variables.

6.4.2 Expressive Power

In this thesis, the Esp synchronisation mechanism has been used to illustrate the concepts of
the Sos paradigm. Through Esp, we have shown that Sos offers excellent expressive power.
This has been shown in three different ways.

Firstly, we have shown in Section 4.2.1 that Esp actually subsumes several other synchro-
nisation mechanisms such as synchronisation counters, SP, Path Expressions and the “by”
clause of SR. Thus Esp is at least as powerful as these mechanisms.

Secondly, the examples in Sections 4.2.2 and 4.2.3 implement many synchronisation poli-
cies, including several complex scheduling policies that many other synchronisation mecha-
nisms find difficult to implement, e.g., the Disk Head Scheduler and starvation-free versions
of the Dining Philosophers and the Shortest Job Next scheduler.

Finally, Bloom [Blo79] claims that a synchronisation mechanism needs access to six differ-
ent types of information in order to be expressively powerful. As we discussed in Section 3.6.2,
all of these types of information are associated with, or can be derived from, invocations.
Since EsP has comprehensive support for accessing and processing information associated
with invocations, Esp satisfies all of Bloom’s requirements for expressive power.

We warned in Section 2.1 that expressive power often comes at a price that includes one
or more of the following: (i) creeping featurism and complexity, (ii) an abrupt degradation
of expressive power, and (iii) lack of modularity. None of these prices is paid in Esp, as we

now discuss.
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Creeping featurism and complexity. As discussed in Section 2.1.1, the expressive power
of a synchronisation mechanism can often be increased by introducing a new construct. The
desire to have more and more power may result in a synchronisation mechanism containing
a mass of constructs. Not only might the sheer number of constructs prove to be a burden
for programmers to learn, but the amount of possible interactions between constructs can
increase language complexity.

All of the expressive power of the Sos paradigm is derived from just four concepts so Sos
cannot be accused of creeping featurism. This is verified in the Esp mechanism which has
a remarkably low number of constructs—especially if the syntactic sugar of synchronisation
counters and scheduling predicates are removed. The DESP language simplifies matters even
further by merging two of the basic concepts of Sos—actions and the means to cause invo-
cations to start execution—with an existing language construct, operations. If the syntactic
sugar were removed from DEsp then it would have just two language constructs that are
not in the sequential language, Dee: (i) the map directive, and (ii) the waiting/ezecuting

expressions.

Degradation of expressive power. It is important for a synchronisation mechanism to
exhibit a graceful degradation of expressive power since it assures programmers that the
difficulty of implementing a synchronisation policy will be proportional to the complexity
of the policy. Often, the expressive power of declarative synchronisation mechanisms is
such that they can implement some synchronisation policies in a trivial manner but their
ability to implement more complex policies degrades abruptly. On the other hand, procedural
mechanisms tend to have less expressive power to start off with but this degrades more
gracefully.

As discussed in Section 4.3, Esp is both declarative and procedural at heart, and thus
permits programmers to choose a mixture of these styles to suit the task at hand. As such,
it provides a graceful degradation from declarative into procedural programming.

An excellent example of this is given by the of the Shortest Job Next scheduler. While
SP can implement this directly and easily, it fails completely to cope with the slightly more
complex, starvation-free variant of the policy. This is a classic example of the expressive
power of a declarative mechanism degrading abruptly. However, with the addition of actions
in Esp the starvation-free version of the SJN scheduler can be implemented (Figure 4.6 on

page 52) in just slightly more work than is required for the less complex version of the policy.

Modularity. It is generally accepted that modularity is very important in sequential pro-
gramming languages, helping to promote both code readability and maintainability. Mod-
ularity is important in concurrent programming languages too. Of particular relevance to
this discussion is that, in a COOPL, classes may contain both sequential code and synchro-
nisation code. These serve quite different purposes: sequential code implements the services

(operations) that a class provides while synchronisation code ensures that these services can
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be provided safely in the face of concurrent invocations.

Because of the difference purposes of sequential code and synchronisation code, they
should be kept separate from one another. Certainly, one obvious benefit of such modularity
is that it aids code readability: it is easier to read and understand the sequential code of a
class if it does not have synchronisation code embedded in it (and vice versa).

The Sos paradigm insists that synchronisation code be separated from sequential code.
However, by itself, such a decree is not be enough to guarantee modularity since if a synchro-
nisation mechanism has limited expressive power then programmers might resort to finding
a way to work around the decree in order to implement some synchronisation policies be-
yond the mechanism’s expressive power. However, a separation of synchronisation code from
sequential code combined with a high degree of expressive power makes it possible for Sos
to fully segregate synchronisation code from sequential code without placing any apparent
limits on the range of synchronisation problems that can be implemented.

Two other benefits of this segregation of synchronisation code and sequential code are as
follows. Firstly, this complete segregation is a prerequisite for language support for generic
synchronisation policies. This will be discussed in Part III. Secondly, it reduces the problems

associated with using inheritance in COOPLs, as we will show in Part IV of this thesis.

6.4.3 Easy Applicability to Languages

Of the four core concepts of the Sos paradigm, not one is new. Each can be found, in one

form or another, both in a variety of synchronisation mechanisms and in sequential languages:

¢ Event-based programming is utilised in sequential programming for tasks such as writ-
ing simulations or window-based applications. Events can also be found, albeit im-
plicitly, in a great many synchronisation mechanisms. For example, synchronisation
counters, used in many mechanisms, are simply counts of how often particular events

have occurred.

o Although different synchronisation mechanisms may differ in what construct they em-
ploy to cause invocations to start executing, every synchronisation mechanism employs

a construct, of some kind, for this purpose.

The concept of guards—the construct employed in Esp—is used in several synchroni-
sation mechanisms. Guards, albeit with abort rather than delay semantics, are also
well-known in sequential programming, e.g., Dijkstra’s guarded commands [Dij75] and

Eiffel’s pre- and post- conditions [Mey92].

e The requirement of the Sos paradigm to separate sequential code and data from syn-
chronisation code and data is a modularity requirement. One natural consequence of
it is the introduction of synchronisation variables. Like the other aspects of the Sos
paradigm, synchronisation variables are not new. Other synchronisation mechanisms
employ synchronisation variables in one form or another, e.g., synchronisation coun-

ters. Of course, variables are ubiquitous in sequential programming languages and, as
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we discussed in Section 3.5, the introduction of synchronisation variables generalises

the existing concept of variables.

e Information about an invocation—notably its parameters and local variables—is acces-
sible within the sequential body of an operation. Usually such information is stored
together in an implicit data structure—often termed an activation record or a message.
Likewise, the last core concept of the Sos paradigm groups together similar information

about invocations and makes it accessible to synchronisation code.

As we discussed in Section 3.3, every synchronisation mechanism has access to some
information about invocations. Many synchronisation mechanisms do not group to-
gether information about an invocation in the manner that Sos does. However, some

synchronisation mechanisms do, e.g., Eiffel|| and Mediators [GC86].

In effect, the Sos paradigm takes several concepts commonly found both in sequential and
concurrent programming and combines them in a useful manner. Being composed entirely of
existing concepts makes it easy to introduce Sos to a host language since it is likely that some
of the core concepts of Sos will already be supported in the language. This was demonstrated
with the design of the DEsP language in which the concepts of Sos were introduced via just

two new language constructs and a handful a keywords.

6.5 Future Work

We bring this chapter, and indeed Part II of this thesis, to a close by briefly outlining some

areas for future work.

6.5.1 Optimisation

The performance figures for our prototype implementation of DEsp show that an unoptimised
implementation of Esp can have a significant run-time overhead. In Section 4.4 we outlined
two different optimisation techniques to show that optimisation ¢s possible. In Part III of this
thesis we will show how generic synchronisation policies reduce the difficulties of optimisation
by transformation. However, we have not invested much effort in optimisation and there is

still much work that could be done in this area.

6.5.2 Integration with Other Language Constructs

It is well-known that there are problems integrating synchronisation with inheritance. We
discuss this issue in detail in Part IV of this thesis. However, there are some other language
concepts with which a synchronisation mechanism must also integrate, as we now briefly
discuss. A more detailed discussion of the issues involved in integrating synchronisation with

these concepts can be found in the “Future Work” chapter (Chapter 14).
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Exception handling. If a language supports both concurrency and exceptions then these
need to be integrated together. We are not aware of any language which currently does
this satisfactorily. One approach would be to extend S0s so that it recognises an ezception
event. For example, the ezception(Foo) event would occur if execution of operation Foo was
terminated abnormally. An action associated with such an event could take appropriate
measures to ensure that synchronisation variables are left in a consistent state. In effect,
just as some languages provide an exception handling mechanism for sequential code, so too

might they support exception handling for synchronisation code.

Exception raising. Along with integrating a language’s exception handling mechanism
with its synchronisation mechanism, exception raising would also need to be integrated. For
example, consider Eiffel-style pre/postconditions [Mey92]. These assertions are expressed
in terms of instance variables. Thus the evaluation of a pre/postcondition is similar to the
execution of a read-style operation in that it it dangerous to do so if a write-style operation is
being executed at the same time. In effect, Eiffel-style pre/postconditions are incompatible

with concurrency within an object.

Timeouts. All the events recognised in the Sos paradigm—arrival, start and term—come
from a single source: invocations. If other event sources were permitted then this could
extend the utility of the paradigm. For example, if timing events were permitted then this
would allow timeouts to be specified for invocations, which would aid in the development of

real-time software.
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Part 111

Generic Synchronisation Policies
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Introduction to Part 111

As we discussed in Section 2.3, generic synchronisation policies offer several benefits. For
instance, there is the benefit of reuse as a policy need be written only once and can then
be instantiated many times. Also, the declarative nature of instantiating a policy can make
it easier to use procedural synchronisation mechanisms. Finally, there is the possibility of
having skilled programmers write libraries of generic synchronisation policies that can be
used by less skilled programmers.

Part III of this thesis is devoted to the topic of generic synchronisation policies. It is
structured as follows. We start in Chapter 7 with a discussion of the issues that arise when
adding support to a language for generic synchronisation policies. The issues are discussed
both in general and, for illustration purposes, in the context of the DEsP language (previously
introduced in Part II). We show that these issues can be dealt with in a straight-forward
manner. The implementation details of a prototype compiler that supports generic synchroni-
sation policies is presented in Chapter 8. Some open issues regarding generic synchronisation
policies are discussed in Chapter 9. Chapter 10 brings Part III to a close. It starts off by
examining how other languages provide (partial) support for generic synchronisation policies.
It then summarizes the contributions we have made in this area and suggests some areas for

future work.
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Chapter 7

Language Support for Generic

Synchronisation Policies

In this chapter, we explore the basic issues involved in providing language support for generic
synchronisation policies (GSPs).

This chapter is structured as follows. Section 7.1 outlines the basic language-design issues
that need to be addressed. Section 7.2 discusses how the Sos paradigm helps to address
some of these issues. To show that language support for generic synchronisation policies is
possible, Section 7.3 discusses how generic synchronisation policies can be introduced to the
DEesp language. This chapter is brought to a close in Section 7.4 with a brief summary of

the chapter’s main findings.

7.1 Issues to be Addressed

Some of the basic issues that need to be addressed when considering language support for

generic synchronisation policies are as follows.

Separation of synchronisation code and sequential code. Generic synchronisation
policies will be written outside of the context of any particular sequential class. Thus syn-
chronisation mechanisms that advocate the mixing of synchronisation code with sequential

code will not be suitable for writing generic synchronisation policies.

Expressive power. Many existing synchronisation mechanisms currently permit synchro-
nisation code to be mixed with sequential code in an effort to gain more expressive power. This
raises the question of whether an enforced separation of synchronisation code from sequential
code will have any detrimental effect on the expressive power of a generic synchronisation

mechanism.
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Different types of formal parameters. Recall some of the sample synchronisation poli-

cies introduced in Section 2.3:

policy Mutex[ Ops: Set[Operation] ]

policy ReadersWriter[ ReadOps: Set[Operation], WriteOps: Set[Operation] ]
policy BBuf[ PutOps: Set[Operation], GetOps: Set[Operation], Size: Int ]
policy SJN[ Ops: Set[Operation|, Length: Parameter |

Notice that all of these are instantiated upon sets of operations. However, one of them,
BBuf, is also shown to be instantiated upon an integer constant, and another, SJN, upon a
parameter. This raises the issue of how many different types of formal parameter are required

in order to support generic synchronisation policies.

Hierarchies of generic synchronisation policies. Some synchronisation policies are
similar to one another. This raises the question of whether or not it makes sense to organise
generic synchronisation policies into hierarchies analogous to conventional (sequential) class

hierarchies.

7.2 Suitability of the Sos Paradigm for Generic Synchronisa-

tion Policies

The Sos paradigm proves to be very amenable to the design of mechanisms that support
generic synchronisation policies. There are two reasons for this.

Firstly, one of the four basic constituents of the Sos paradigm is the requirement that
synchronisation code be separated from sequential code. Furthermore, as can be seen from the
Esp mechanism which embodies the Sos paradigm, this separation does not hinder expressive
power in any way. Thus the first two issues raised in Section 7.1 are addressed satisfactorily.

Secondly, the Sos paradigm shows that all the information that a synchronisation mech-
anism requires in order to be expressively powerful comes from one primary source: the
invocation. The obvious way to provide a GSP mechanism with information about invoca-
tions, and thus ensure the mechanism has good expressive power, is to inslantiale generic
synchronisation policies upon invocations of operations. This is the approach we take. How-
ever, before discussing it, we first consider the (lack of) distinction between an operation and
an ¢nvocation of an operation.

In considering some programming language constructs, one can see that the distinction
between an operation and an invocation of an operation is not always clear syntactically. For

example, consider the following declaration of an operation:

Foo(...)

var x: Int

(..
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The variable z (syntactically) appears to be local to the operation but is actually local to
invocalions of the operation. Similarly, the following guard appears to synchronise operation

Foo but it actually synchronises invocations of operation Foo:
Foo: exec(Foo) = 0;

In providing language support for generic synchronisation policies, we follow this trend by
(syntactically) instantiating generic synchronisation policies upon (sets of) operations rather
than (sets) invocations of operations. In fact, we have already done this in previous examples.

For example, consider the SJN policy:
policy SJN[ Ops: Set[Operation|, Length: Parameter |

This syntax suggests that Ops are instantiated upon (a set of ) operations rather than (a set
of ) invocations of operations.

Another point to note about this example is that it treats the parameter Length as being
syntactically separate from the (invocations of) operations. However, parameters are part of
invocations and it would be desirable use an alternative syntax to indicate this. One might

express this as follows:!
policy SJN[ Ops: Set[Operation[Length: Int]] ]

We said previously that the invocation is the only source of information required in order
to have good expressive power. As such, “(sets of ) invocations of operations” is the only kind
of parameter required by generic synchronisation policies in order to have good expressive
power. A practical application of this is that, since there can be no ambiguity as to the
type of a formal parameter of a generic synchronisation policy, the syntax used to denote
these formal parameters can be shortened by removing the redundant type information. For

example, SJN policy can be expressed as:
policy SJN[ Ops[Length: Int] ]

This elimination of redundant syntax has two benefits.

Firstly, it reduces the amount of nested square brackets that appear in declarations of
generic synchronisation policies, thus aiding code clarity.

Secondly, the type “Set[Operation]” no longer appears in the syntax, but rather is implicit.
This means that language designers are not obliged to extend the host language to treat
“Operation” as a first class type in order to support generic synchronisation policies. (Of
course, language designers may do so if they wish.) Also, the syntax of generic synchronisation
policies (GSPs) is now quite different to that of generic/abstract data types (ADTs). This
difference in syntax compliments their different semantics. In particular, if there were a
combined syntax for both ADTs and GSPs then this might both complicate the writing of

compilers and be a source of confusion for programmers.

!This is temporary syntax for illustrative purposes only.
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The other generic synchronisation policies mentioned previously can be expressed as fol-

lows:

policy Mutex| Ops |
policy ReadersWriter[ ReadOps, WriteOps |
policy BBuf] PutOps, GetOps, Init[Size: Int] ]

It is common for the size of an object to be passed as a parameter to its constructor. Thus,
by instantiating the Init parameter of the above BBuf policy upon the constructor(s) of a
class, the generic synchronisation policy can know the size of the object it is synchronising.

A sample instantiation of this can be seen in Figure 7.1.

class Buffer {
... // instance variables
Buffer(BufSize: Int) { ... } // constructor

Put(...){ ...}
Get(...){ ... }

synchronisation

BBuf[ {Put}, {Get}, {Buffer[BufSize]} |;

Figure 7.1: Bounded Buffer

7.3 Generic Synchronisation Policies in Desp

The discussion in this chapter so far has been somewhat abstract. We now bring the discussion
to a more concrete level by discussing what changes need to be made to the DEsP language

in order to make it support generic synchronisation policies.

7.3.1 Syntax and Usage

We introduce the language changes by example. Consider the bounded buffer class in Fig-
ure 7.2. Unfortunately, the syntax “{...}” is already in use in DESP to denote comments, so
it cannot be used for sets. We could use “[...]” (as in Pascal) but using this syntax for both
sets and genericity would lead to a confusing nesting of square brackets when instantiating
generic synchronisation policies. Instead, we use “<...>” to denote sets of operations.
Figure 7.3 shows the implementation of the BBuf policy that is instantiated upon the
class in Figure 7.2. Note that the synchronisation counters used in this generic policy are
expressed in terms of the formal parameters of the policy rather than actual operation names.
Similarly, if the generic policy had used waiting and executing in, say, scheduling predicates,

then these would also have been expressed in terms of the policy’s formal parameters.
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class BoundedBuffer[T: Any]
... { instance variables }
public cons make(BufSize: Int) begin ... end { constructor }
public method Put(elem: T) begin ... end
public method Get: T begin ... end
synchronisation
BBuf[ <Put> <Get> <make[BufSize]> |;

Figure 7.2: A bounded buffer class

policy BBuf[ PutOps GetOps Init[Size: Int] ]

var Size: Int

method s_Init(t: Sizelnv)

begin Size := t.Size; end

method g_PutOps(t: Invocation): Bool
begin
result := (ezec(PutOps GetOps) = 0) and (term(PutOps) — term(GetOps) < Size)
and (term(Init) > 0);

end

method g_GetOps(t: Invocation): Bool
begin
result := (ezec(PutOps GetOps) = 0) and (term(PutOps) — term(GetOps) > 0)
and (term(Init) > 0);

end

map start(Init) — s_Init
guard(PutOps) — g PutOps
guard(GetOps) — g_GetOps

Figure 7.3: BBuf generic synchronisation policy

Note that the guards on PutOps and GetOps ensure that Init has finished executing

before permitting these operations to execute. This may seem to be overly cautious since

surely programmers would not be foolish enough to concurrently invoke operations upon

an object before its constructor has completed execution. (This is technically possible; the

creation of the object could take place in one arm of a cobegin/coend construct while

other arms contain statement to invoke operations upon the object that is being created.)

However, it must be remembered that there is nothing in the syntax to restrict the Init formal
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parameter of the BBuf policy to being instantiated upon constructors only. It is possible
that a programmer might instantiate Init upon an operation that is not a constructor in
which case it is entirely possible that, say, a PutOps operation might be invoked before Init.

Note that the BBuf policy neglects to ensure that Init is invoked only once. The following

guard on Init could be used to address this concern:
Init: start(Init) = 0;

This would have the effect of delaying indefinitely all but the first invocation of Init. How-
ever, since repeated invocations of Init can be considered to be a programming error, it would
be preferable to raise an exception rather than delay them indefinitely. Unfortunately, the
synchronisation mechanism of DESP has not yet been integrated with its exception handing
mechanism so this cannot be done. A discussion of the issues involved in integrating syn-
chronisation mechanisms with exceptions can be found in Section 14.5 of the “Future Work”
chapter.

One unexpected benefit that generic synchronisation policies have over writing synchro-
nisation code directly in classes is that type safety has been improved somewhat. Recall
from Section 5.4.4 on page 71 that, in DESP, parameters used by synchronisation code are,
in effect, declared twice: once in the signature of an operation and a second time as an in-
stance variable in the Invocation subclass used for that operation. The compiler checks the
names of instance variables in the Invocalion subclass against the names of parameters in the
operation’s signature and if there is a match then the compiler generates code to copy the
parameter to the corresponding instance variable of the Invocation object. The main failing
of this scheme is that if a programmer misspells the declaration of the instance variable in the
Invocation subclass then the compiler assumes it is a synchronisation local variable rather
than a misspelt parameter name.

Generic synchronisation policies fix this problem as follows. All of the parameters of an
operation that a generic synchronisation policy is interested in are declared in the signature
of the policy. The compiler can then check that the Invocation subclass associated with an
operation contains an instance variable that is a namesake of the formal parameter declared
in the policy’s signature—and report a compile-time error if this is not the case.

For example, the first line of the BBuf policy (Figure 7.3) indicates that Init takes a
parameter called Size of type Int. The signature of the start(Init) action (operation s_Init)
informs us that the Invocation subclass associated with Init is Sizelnv. The compiler can

then check this class (Figure 7.4) to ensure that it has a Size instance variable of type Int.

7.3.1.1 Inheritance

By default, a subclass inherits the instantiated policy of its parent class. However, a subclass
can re-instantiate the generic synchronisation policy used in its parent class (or instantiate
a different policy) in order to, say, take account of a new operation. This is illustrated in

Figure 7.5, which shows a subclass of the bounded buffer shown in Figure 7.2.
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class Sizelnv inherits Invocation

public var Size: Int

public method set_Size(Val: Int)
begin Size := Val; end

Figure 7.4: The Sizelnv class, used in the BBuf policy

class ExtendedBuffer[T: Any] inherits BoundedBuffer
public method PutFront(elem: T) begin ... end
synchronisation
BBuf[ <Put PutFront> <Get> <make[BufSize]> |;

Figure 7.5: An extended bounded buffer

7.3.2 Approaches to Implementation

Having used an example in DEsp-like syntax to illustrate a generic synchronisation policy

and its instantiation, we now discuss possible approaches to code generation.

7.3.2.1 Preprocessing

It would be possible to treat generic synchronisation policies as being macro declarations, e.g.,
similar to the #£define preprocessor directive in C [KR78]. In this case the instantiation of a
generic synchronisation policy would be treated as the expansion of a (large) macro. The code
of the instantiated policy would be placed in-line in the instantiating class by the preprocessor
and the preprocessed code passed onto the compiler would be identical to that of the current
implementation of DEsP.

The advantages and disadvantages of this approach are similar to those of preprocessors
in general.

The main advantage is that it would be easier to write a preprocessor to provide a lan-
guage extension such as this than it would be to modify an existing compiler. However, a
disadvantage is that preprocessors tend to be rather simple-minded and do not do any error-
checking. Thus programmers would be informed of errors in a generic synchronisation policy
only when the policy has been instantiated. As such, the quality of error reporting may be
poor.

This problem could potentially be overcome by including syntax and semantic error
checking in the preprocessor but this then dramatically increases the complexity of the
preprocessor—probably to the point where it would be have been less work to modify the
compiler in the first place.

Another problem with the preprocessor approach is that it can lead to code-bloat in

applications since it is a form of source code reuse but not of object-code reuse.
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7.3.2.2 Treating Generic Synchronisation Policies as Classes

In the discussion so far, the keyword we have used to denote a generic synchronisation policy
is policy. If this keyword were replaced with class then generic synchronisation policies
would be very similar (syntactically) to “normal” sequential classes. This suggests that one
approach to code generation would be to compile a generic synchronisation policy in a manner
similar to the way that sequential classes are compiled. Then, just as instances of a class can
be created, so too could instances of a particular generic synchronisation policy.

When a class, Foo, instantiates a generic synchronisation policy, Bar, the compiler would
generate code so that whenever an instance of Foo is created at run-time, an instance of Bar
would be automatically generated to synchronise invocations upon it.

We have modified the DEsp compiler so that it supports generic synchronisation, and
named this modified language Gasp. The approach used in the implementation of this
prototype has been to compile policies in a manner similar to the way classes are compiled.
We defer discussion of the low-level implementation details until the next chapter so we
finish off this discussion by pointing out some of the advantages of proper compiler support
for generic synchronisation policies compared to the preprocessor approach.

Firstly, it avoids some of the problems associated with preprocessing that were discussed
in Section 7.3.2.1: code bloat and poor error reporting.

Secondly, this approach can lead to some run-time space savings. This is because synchro-
nisation counters need to be allocated only for each formal parameter of a generic synchro-
nisation policy rather than for each synchronised operation in a class. For example, a Read-
ersWriler policy requires that just two sets of synchronisation counters be maintained—one
for read-style operations and the other for write-style operations—irrespective of how many

operations there actually are in a class that instantiates this policy.

7.3.3 Hierarchies of Generic Synchronisation Policies

As previously said, our GASP prototype treats generic synchronisation policies as being akin
to classes. This raises the possibility of having hierarchies of policies. There are two uses
for inheritance hierarchies—at least in sequential programming. One is to use inheritance
as a means of code reuse. The other is to use hierarchies to indicate subtype (sub-policy)

relationships.? We discuss each of these possibilities in turn.

Hierarchies for code reuse of generic synchronisation policies. All variants of the

readers/writer policy have the following constraints in common:

?Note that it is common for object-oriented languages to combine subtyping and code reuse in a single
hierarchy, though some people, e.g., Snyder [Sny86, pg. 41], feel that these are separate concepts and languages
would be best served by maintaining separate hierarchies for these two purposes. It is outside the scope of

this thesis to discuss whether one combined hierarchy or two separate ones are preferable.
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ReadOps: exec(WriteOps) = 0;
WriteOps: ezec(ReadOps, WriteOps) = 0;

By themselves, the above guards implement the basic readers/writer policy. Other variants
can be derived by and-ing on additional constraints. For example, the readers-priority vari-
ant can be obtained by and-ing on the constraint “wait(ReadOps) = 0” to the guard for
WriteOps. Similarly, the FCFS variant can be obtained by and-ing on appropriate sched-
uling predicates. Thus, one might consider implementing the basic readers/writer policy as
a base policy and implementing the other variants as sub-policies that incrementally modify
the inherited guards as appropriate.

Since GAsP already contained the infrastructure to enable inheritance of classes, it was
trivial to extend it to permit inheritance of policies. Our initial experiments in GASP indicate
that, in practice, inheritance hierarchies of policies are quite shallow. Thus the ability to
inherit generic synchronisation policies appears to be of less importance for code reuse than
the ability to instantiate a generic policy multiple times.

The current implementation imposes a restriction on the inheritance of policies: the formal
parameter list of a sub-policy must be identical to that of its parent policy. To understand

why we imposed this restriction, consider the following policy signatures:

policy Mutex| Ops |

policy FCFS] Ops |

policy ReadersWriter[ ReadOps WriteOps |
policy ReadersPriority[ ReadOps WriteOps ]
policy SJN[ Ops[Length: Int] ]

Since Mutex and FCFS has the same formal parameter list, one can be implemented as
a sub-policy of the other. Similarly, ReadersPriority can be implemented as a sub-policy
of ReadersWriter, or vice versa. However, the restriction we have imposed means that, say,
Mutex cannot be a sub-policy of ReadersWriter, or vice versa. This seems entirely reasonable
for two reasons: (i) they have different numbers of formal parameters, and (ii) the formal
parameters have different names. Another possibility would be to permit SJN to inherit from
Mutex. In this case, the two policies both take a single formal parameter, Ops. The only
difference is that Ops in the SJN policy takes a parameter, Length, while its counterpart
in Mutex does not. The extra flexibility of permitting related policies to take non-identical

formal parameter lists seems slight and thus we decided to disallow it in GASP.

Hierarchies to denote sub-policy relationships of generic synchronisation policies.
Inheritance of policies in GASP is used purely as a means of code reuse; there is no concept of
one policy semantically being a sub-policy of another. The reason this issue is side-stepped
in GAsP is that it is beyond the scope of this thesis to define what is meant by saying that

one policy is a sub-policy of another.
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We are not aware of any work that attempts to define what is meant by one generic syn-
chronisation policy being a sub-policy of another. However, we are aware of some work that
deals with subtyping rules for synchronised classes, i.e., classes that contain both sequential
code and synchronisation code. Even in this area, the work seems to be of a tentative nature,
and the claims of different researchers tend to conflict with each other. For example, Frolund
[Frg92] claims that synchronisation constraints in a subclass should be more restrictive than
those in the base class, while Lohr [Loh91, pg. 21] claims the opposite: that they should
be less restrictive. Since this topic is outside the scope of this thesis, we do not consider it

further.

7.3.4 Optimisation by Transformation

As previously discussed in Section 4.4, one way to optimise ESP is to use a technique known

as “optimisation by transformation.” Simply put, this involves two steps:

1. Recognise that a piece of synchronisation code implements a particular synchronisation

policy.

2. Then replace this synchronisation code with code that implements the same policy in

a more efficient manner.

Usually, one might consider the first step—recognising what policy is implemented by a piece
of synchronisation code—to be the more difficult of the two. However, it is made almost
trivially easy with generic synchronisation policies since the synchronisation policy used is
known to the compiler by name. Thus a compiler may recognise the names of several well-
known synchronisation policies and special-case the code generation whenever one of them is
used.

In order to illustrate that this technique is feasible, the GAsp compiler performs optimi-
sation by transformation for two particular policies: Mutex (mutual exclusion) and FCFS (a
first-come, first-served scheduler).® These policies were chosen because of the ease of generat-
ing optimised code for them. Mulex can be trivially implemented by semaphore operations.
In general, one should not assume that processes blocked on a semaphore will be woken up
in any particular scheduling order; however, as we implemented the semaphore operations
ourselves, we know that blocked processes are woken in a first-come, first-served order. As
such, the same optimised code that is generated for Mutez can also be generated for FCFS.

Obviously, recognising policies by name limits the compiler to being able to optimise only
a predefined set of policies—it cannot optimise arbitrary synchronisation code that a user
might write. However, it can be a useful stop-gap technique until research has been carried
out on recognising policies in arbitrary synchronisation code. Also, it should be noted that

although the policies that are optimised in this manner is currently hard-coded into the Gasp

®Unoptimised implementations of these policies are also available under the names UnoptimisedMutex

UnoptimisedFCFS.
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compiler, this need not be the case. For example, a compiler’s configuration file might specify
a list of policies and their corresponding optimised object-code files.

One cause for concern with optimisation by transformation is that the compiler blindly
assumes that the name of a policy reflects what is actually implemented by the code of
the policy. This assumption should be valid for the standard libraries of synchronisation
policies shipped with a compiler. However, there is nothing to prevent a programmer from
writing their own policy called, say, Mutez, that implements something other than mutual
exclusion. It would be incorrect for a compiler to optimise this user-written Mutex policy into
an efliciently implemented mutual exclusion policy. For this reason, the GAsP compiler prints
a warning message if it applies optimisation by transformation when compiling a policy.

An alternative approach to reduce the danger of incorrectly optimising user-written poli-
cies would be for the compiler to apply such optimisation techniques only if, say, the policy
being compiled resides in a directory that contains the standard library shipped with the

compiler.

7.4 Summary

This chapter has explored the issues that surround the provision of language support for
generic synchronisation policies. The main findings of this chapter are as follows.

Firstly, some aspects of the Sos paradigm help in providing language support for GSPs:

e Sos shows that synchronisation code can be completely separated from sequential code
without sacrificing expressive power. This is vital since generic synchronisation policies

are written independently of sequential code.

e The Sos paradigm shows that all the information a synchronisation mechanism needs
in order to have good expressive power can be obtained from one primary source. This
results in generic synchronisation policies needing to be instantiated upon just one type

of parameter which simplifies the burden of providing language support.

Secondly, generic policies are syntactically similar to classes and can be compiled as such,
thus minimising the changes that have to be made to a compiler in order to support GSPs.

Finally, generic synchronisation policies make it easier to implement optimisation by
transformation.

In the next chapter we discuss the implementation details of our GAsp prototype.
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Chapter 8

An Overview of the Prototype

Implementation

The previous chapter discussed the issues that arose in providing language support for generic
synchronisation policies. In order to illustrate these issues by means of example, the DEsp
language (originally introduced in Chapter 5) was modified to provide such support. The
resulting language was named GASP.

We have implemented a prototype compiler for the GAsp language. This prototype acts
as a proof of concepl, i.e., it proves that the concepts of generic synchronisation policies can
be implemented without undue difficulty. Since the synchronisation mechanism employed in
Gasp is Esp, this prototype also acts as a proof of concept for Esp and the Sos paradigm,
the concepts of which Esp embodies.

This chapter is structured as follows. Section 8.1 briefly discusses some prior experience
of the author that has had an influence on the DEsp and Gasp prototypes. Section 8.2
discusses the reasons why Dee was chosen as the host language upon which to prototype
support for generic synchronisation policies and the Esp synchronisation mechanism. Then
in Section 8.3 we give an overview of the architecture of the Dee compiler, linker and run-
time system. Section 8.4 discusses an implementation issue that is common to both Esp
and generic synchronisation policies. This is followed by discussions of issues specific to
the implementation of generic synchronisation policies in Section 8.5, and issues specific to
Esp in Section 8.6. Section 8.7 discusses the run-time overhead of synchronisation policies
expressed in Esp and how this can be reduced considerably with the aid of optimisation by

transformation. Finally, Section 8.8 summarises the main points raised in this chapter.

8.1 Relevant Prior Experience

Two prior experiences of the author have had an influence on the approach taken to implement
the current prototype. We mention them here as background material.

Firstly, the author has previously written a tool, called Pasm, for teaching concurrency
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[McH89]. This involved extending a compiler for a subset of Pascal with the following: (i) a
cobegin/coend construct to create processes; (ii) an Ada-like, hierarchical, shared memory
address space for processes (child processes have their own private memory segments but
also share the address space of common ancestor processes); (iii) semaphores; (iv) monitors;
and (v) a debugger with support for these concurrency constructs. That particular compiler
produced pcode which was then interpreted. Since the compiler was to be used for teaching
purposes, the run-time inefficiency of interpreted pcode was of no concern. Using pcode had
the advantage of speeding implementation.

Secondly, in 1991 we implemented a throw-away prototype of the SP synchronisation
mechanism. The prototype consisted of writing the run-time support for the synchronisation
mechanism as a Cxx* class. Classes to be synchronised inherited from this run-time support
class and the guards were “hand compiled” by the programmer. This implementation acted
as a proof that the concepts of SP could be implemented; in particular, it allowed us to
develop and test the algorithms we had devised for the run-time support of a guard-based

mechanism. These same algorithms are used in our DEsP and GASP prototypes.

8.2 Choosing a Host Language

Our choice of an object-oriented language upon which to implement Esp and generic syn-
chronisation policies was based purely on pragmatic criteria rather than any features of the
language itself. We considered several languages and finally chose Dee [Gro90], for the fol-
lowing two reasons.

Firstly, we had access to the source code of a Dee compiler. This was vital since we would
be modifying the language.

Secondly, the Dee compiler produces pcode which is then interpreted. Our previous
experience of implementing Pasm and the throw-away prototype of SP had shown us that it
was easier to debug the implementation of concurrency constructs in an interpreted pcode
environment where one can easily inspect the state of the hypothetical, pcode machine rather
than in a compiled environment that utilises a threads package.

A potential disadvantage of this decision is that implementing a synchronisation mecha-
nism on a hypothetical, pcode machine does not prove that the mechanism can be implemented
on a real CPU architecture. In particular, one might devise new pcode instructions in order
to facilitate the implementation of new constructs. If such pcode instructions are arbitrarily
powerful then it might be difficult to implement similar run-time support on a real CPU that
has a fixed instruction set. In this case, the prototype would not be a proof of concept since
it would fail to show that the concepts can be implemented on real architectures.

Our approach to this was to assume that a host environment would provide minimal
run-time support for concurrency: semaphores and the capability to create processes. We

implemented pcode instructions to provide these facilities. All other new pcode instructions

or [G1092] is a concurrent, distributed version of C++.
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that we devised were no more powerful than instructions found on real CPUs: move values
between registers and memory, call and return, etc. In this way, we feel that our prototype
illustrates that generic synchronisation policies and Esp are implementable on a real CPU

architecture.

8.3 Notes on Dee

Before we discuss the implementation details of the GAsP prototype, we discuss some relevant

architectural aspects of the Dee compiler, linker and run-time system.

8.3.1 Hypothetical Machine Architecture

The hypothetical pcode machine [Gro90] is stack-based. There are three stacks.

The object stack is used to store parameters and variables declared locally to operations.
Actually, this stack holds pointers to the objects; the objects themselves are allocated in heap
memory.

The link stack stores information required by the call/return mechanism used to im-
plement operation invocations. It is common in real CPU architectures for a single stack to
combine the purposes of the Dee machine’s object stack and link stack. The Dee hypothetical
machine maintains separate stacks in order to make garbage collection easier. (The garbage
collector knows that everything on the object stack is a reference to an object; if the object
stack were combined with the link stack then it would have the overhead of determining
which entries were object references and which were not.)

The final stack in the Dee hypothetical machine is the ezception stack. As its name
suggests, this holds information necessary to implement the exception handling mechanism
of Dee. The integration of synchronisation with exception handling is outside of the the scope

of this thesis and so the exception stack will not be considered any further.

8.3.2 Multi-pass Compiler

Dee is implemented by a multi-pass compiler. The first pass parses the entire source code of
the class being compiled and a syntax tree representation is constructed.

Then the “interface files” (discussed in Section 8.3.3) of all the classes referenced (either
as ancestors or service providers) by the class being compiled are similarly parsed and syntax
trees for them are constructed.

The semantic analysis stage traverses and annotates the syntax tree of the class being
compiled. When semantic analysis is completed, the annotated syntax tree is again traversed
and object-(p)code is generated.

One unusual aspect of the compiler is that it does not maintain a symbol table per se.

Rather, the syntax trees serve this purpose.
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8.3.3 Compiler-generated Files

In order to avoid cluttering the source code directory with extra files, all files produced by
the compiler are stored in a sub-directory. In the original Dee compiler, several such sub-
directories were used and generated files were stored in these different directories according
to purpose. However, we found that setup to be confusing and changed it so that all files
generated by the compiler are stored in a single sub-directory, “./deegen”. Files generated

by the compiler include:

e Object-(p)code files for individual classes.
e Pcode “executable” files for linked programs.

e Assembly code versions of the above pcode files.

The compiler also generates “interface files” that describe various interfaces to a class. In

particular, it generates:

o A “.ext” (extension) file that describes the interface of a class to its heirs. The compiler
will read such files in order to determine what instance variables and operations the

class being compiled inherits from its parent classes.

o A “.cli” (client) file that describes the interface of a class to its clients. In effect, this

contains a list of the publicly visible instance variables and operations.

The syntax of these interface files is similar to that of Dee source code files. This permits the

same parser to be used for both parsing source code files and interface files.

8.3.4 Offsets for Instance Variables and Operations

When an object is created at run-time, space is allocated from the heap to store the data
of the object (header information and instance variables). Instance variables are accessed by
their offset within this space allocated for the object. Operations of an object are invoked
by means of their offset within the virtual function table? of the class to which the object
belongs.

An unusual aspect of Dee is that these offsets for instance variables and operations are
assigned not by the compiler but rather by the linker. The way this works is as follows.

Some of the pcode instructions emitted during the code generation phase of the compiler
need to take offsets to atiributes (instance variables or operations) as arguments. Since the
compiler has not allocated offsets for attributes, it instead creates a “dictionary” which is

prepended to the object-(p)code file. Each entry in the dictionary is a record which contains

2 A wvirtual function table is an array of pointers to functions (operations). Each class has its own virtual
function table and operations of a class are invoked indirectly by indexing into the class’s virtual function table,
rather than by invoking an operation directly at the memory address at which the code for that operation is
stored. Virtual function tables, which are employed to implement polymorphism, can be found in some other
languages including C++ [Str86].
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three fields: the name of the attribute, the class to which it belongs and the attribute’s type
(e.g., whether it is an instance variable or an operation). Whenever a pcode instruction that
takes an attribute argument is emitted, the compiler generates a new dictionary entry and
passes its location index as the argument to the pcode instruction. In effect, the “dictionary”
prepended to the start of the object-(p)code file is relocation information. Other information
embedded in an object-(p)code file includes the names of ancestors of the class for which the

object-(p)code file is being generated.

The linker reads in all the necessary object-(p)code files and, from the ancestor infor-
mation embedded in them, constructs an inheritance hierarchy for the entire program being
linked. It then traverses this hierarchy to allocate offsets for attributes that are mentioned
in the “dictionaries” of the individual object-(p)code files. The algorithm it employs for this
task ensures that the offset allocated to an attribute of a particular class will be identical to
the offset allocated for the same attribute in all ancestor and descendent classes. Once offsets
for all the attributes of classes have been allocated, virtual function tables are created and
indexes into dictionaries (that were given as arguments to pcode instructions by the compiler)

are replaced by the actual offsets of attributes; finally, the linked executable file is written.

Having the linker assign offsets to the attributes of a class helps to ease the implementation
of multiple inheritance. To understand why this is so, consider a class, C', that inherits from
two parent classes: A and B. Let us assume that class A has instance variables p, ¢ and r;
similarly, assume that class B has instance variables z, y and z. If it were the job of the
compiler to assign offsets to the attributes of a class then it might seem natural to start at
zero when assigning offsets for the instance variables. Thus, in class A one might expect
variable p to be at offset 0, ¢ to be at offset 1 and r to be at offset 2. Similarly, the offsets
for class B might be assigned starting from 0. However, this introduces a problem in class C
which inherits from A and B since both p and ¢ are at offset 0. The offsets for the other
instance variables of A and B will similarly conflict. The problem here is that the offsets for
the instance variables of classes A and B were assigned without knowing how these classes
might be later combined via multiple inheritance. In general, this information is not known
at compile time. However, it is known at link time since the Dee linker has knowledge of
the complete inheritance hierarchy. Thus, the linker could assign offsets for attributes more
intelligently. In this example, the linker might assign offsets for the instance variables of class
A starting at 0 and the offsets for the instance variables of class B starting at 3. In this way,

there is no conflicting assignment of variable offsets in class C.

A disadvantage of this scheme is that it can result in “holes” appearing in the space occu-
pied by instance variables of an object—for instance, offsets 0 to 2 are unused in class B—and
in pathological cases this might result in excessive memory wastage. However, it has the ad-
vantage of being able to handle multiple inheritance elegantly. Furthermore, in employing
this relatively simple algorithm in the linker, the complexity of the compiler is reduced con-

siderably.
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8.3.5 Run-time Object Headers

All data types—including “basic” data types such as integers, booleans and strings—are

treated as objects. Every object has the following fields in its header.

Kind. An enumerated value specifying if the object is of a standard class that is handled

specially (integer, boolean, etc.) or a user-defined class.

Descriptor. A pointer to the class “descriptor” of the object. This is, in effect, a virtual

function table.
NextObject. A pointer used by the garbage collector.

Marked. A boolean variables used by the garbage collector to implement a mark and sweep

algorithm.

We said in Section 8.3.4 that it is the responsibility of the linker to assign offsets for the
instance variables of a class. Since this task is not performed by the compiler, the compiler
does not know how much memory space is required to create an instance of a class. Instead,
the descriptor of a class (which is created by the linker) contains a short header that specifies
the amount of memory that should be allocated for an instance of that class. This class
descriptor is passed as an argument to the pcode instruction that allocates memory for an

object.

8.3.6 Preparatory Work

In finishing off this discussion about the architecture of the Dee compiler, we ought to men-
tion that we had to extend Dee in some ways that, while not part of the Esp synchronisation
mechanism, were necessary in order to support Esp. Notably, a synchronisation mechanism
is useless unless there are concurrent processes to be synchronised. Since Dee is a sequential
programming language, the concept of multiple processes had to be added. The author’s
previous experience of implementing Pasm [McH89] was of help in this regard. The cobe-
gin/coend language construct, run-time support for multiple processes and the hierarchical,
shared memory address space for processes added to Dee were all based on their counterparts
in Pasm.

One other limitation of Dee was the inability to perform “super” calls. It was necessary

to add this capability so that we could integrate EsP with a complete inheritance mechanism.

8.4 Implementation Issues Common to both Esp and Generic

Synchronisation Policies

Having given an overview of the Dee compiler, we now turn our attention to the implemen-

tation of the synchronisation features in Gasp. Although GasP supports EsP in the form
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of generic synchronisation policies, these are relatively independent of one another, and it is
possible to have a language that supports Esp but not generic synchronisation policies, or
vice versa. As such, it seems sensible to separate the discussion of implementation details
specific to generic synchronisation policies from those specific to Esp. However, there is
at least one implementation issue that is common to both Esp and generic synchronisation
policies. We start off in this section by discussing it. Then in Section 8.5 we consider im-
plementation details specific to generic synchronisation policies. Finally, in Section 8.6 we

discuss implementation details specific to Esp.

8.4.1 Synchronisation Wrappers

Consider a class that contains three operations—A, B and C'—and instantiates the Mutez

policy as follows:
Mutex[ <A B> |

A and B are said to be synchronised operations since they are synchronised by the instanti-
ation of the policy. Conversely, C' is said to be an unsynchronised operation since it is not
mentioned in the instantiation of the policy.

If an operation, Foo, of a class is synchronised then the compiler generates code of the
form shown in Figure 8.1 for it. Note that the actual sequential code of the operation is
surrounded by a synchronisation wrapper which is composed of two pieces of code: pre_sync
and post_sync.® The pre_sync code notes the arrival of an invocation, blocks the invocation
until its guard becomes true, and then notes the start of the invocation. The post_sync code
notes the termination of an invocation. A discussion of the algorithms used in pre_sync and
post_sync will be given later.

Also note that the actual sequential code of Foo is placed in a separate operation,
_$_Seq_Foo, rather than being embedded in-line.* This allows for a subclass to, say, in-
crementally modify (or re-implement anew) the sequential code of Foo without the compiler

having to generate a new synchronisation wrapper.

®This technique of placing a synchronisation wrapper around the sequential code of an operation is com-
monly employed in the implementation of synchronisation mechanisms. Of course, the actual code generated
in the synchronisation wrapper varies from one mechanism to another. Also, there is no standard terminol-
ogy used to refer to (what we call) pre_sync and post_sync. For example, Andrews talks of implementing
critical regions with “entry and exit protocols” [And91, pg. 98]. Campbell and Habermann implement Path
Expressions with a “prologue” and “epilogue” [CH73, pg. 91]. The implementation of Guide’s synchronisation
mechanism also uses a “prologue” and “epilogue” [DDRY91], while Arche uses a “prelude” and “postlude”
[BBI*]. Conditional Path Expressions uses “entrance” and “exit” parts [GW91, pg. 200]. The implementation

of DRAGOON’s behavioural classes uses “request” and “completion” code segments [Atk91, pg. 214].
*Note that a dollar sign (“$?) cannot appear in an identifier name; thus the “_$_” prefix on this operation

precludes the possibility of its name clashing with the names of programmer-declared operations. A similar

prefix is used for other compiler-generated, instance variables and operations.
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Foo(...)

var result: SomeClass;

{
“pre_sync”;
result := _§_Seq_Foo(...); // actual code of Foo
“post_sync”;

return result;

Figure 8.1: Synchronisation wrapper for a synchronised operation

8.4.2 Unsynchronised Operations

As already discussed, there are two interfaces to a synchronised operation, Foo: the actual,
sequential code, _$_Seq_Foo, and the synchronisation wrapper, Foo. A similar, two-interface
approach is used for unsynchronised operations. During code generation of an unsynchronised
operation the compiler will output the code to _$§_Seq_Foo; it will then generate a pcode label,

Foo, that is an alias for _$_Seq_Foo.

At run-time, all invocations to an operation, Foo, are made through the label Foo. For
synchronised operations, this invocation will go through the synchronisation wrapper, while
if the operation is unsynchronised then the label Foo will be an alias for _$_Seq_Foo and hence

the invocation will be directly on the sequential code.

It may seem redundant to have two identical interfaces for an unsynchronised operation.
However, there is a good reason for it. It is possible that an operation will be unsynchronised
in the class in which it is first defined—hence the compiler will not generate a synchronisation
wrapper for it and Foo will be an alias for _$§_Seq_Foo—but that a subclass will (re-)instantiate
a policy and in doing so make Foo a synchronised operation. In such cases the compiler will
have to generate a synchronisation wrapper for the operation when compiling the subclass.
This can be done more easily if the “two-interface” infrastructure for the operation is already

in place.

8.5 Implementation Issues Specific to Generic Synchronisa-

tion Policies

In this section we discuss aspects of the implementation of GaAsp that are specific to its
support for generic synchronisation policies. We start off in Section 8.5.1 by discussing the
code that is generated for classes that instantiate a generic synchronisation policy. Then
in Section 8.5.2 we discuss the code that is generated for generic synchronisation policies

themselves.
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8.5.1 Code Generation for Classes that Instantiate a Policy

If a class instantiates a generic synchronisation policy then the compiler automatically de-
clares an instance variable, _$_sync_policy, for the class. As its name suggests, this variable
is a reference to an instance of the policy that is instantiated upon the class.

When an instance of the class is created, an instance of the synchronisation policy instan-
tiated upon it is also created and assigned to the _$_sync_policy instance variable. (Precise
details of this are deferred until Section 8.5.1.2.)

8.5.1.1 Synchronisation Wrappers

We mentioned in Section 8.4.1 that a “synchronisation wrapper” is generated for each syn-
chronised operation of a class that instantiates a policy. However, we did not discuss the
algorithm used in the implementation of these synchronisation wrappers. We do so now, by
means of an example.

The signature of the Readers Writer generic synchronisation policy is as follows:
policy ReadersWriter[ ReadOps WriteOps |
Consider a class that instantiates this policy as:
ReadersWriter[ <Foo> <Bar> |

The code generated for the synchronisation wrapper of operation Foo is shown in Figure 8.2.
(The code generated for Bar follows a similar template.) As can be seen, the pre_sync and
post_sync of the synchronisation wrapper simply invoke their counterparts in the synchroni-
sation policy. In effect, the synchronisation wrapper delegates to the generic synchronisation

policy the responsibility of implementing the appropriate synchronisation code.

Foo(...)
var state: Any;

result: SomeClass;

state := _$_sync_policy._$_pre_sync_ReadOps();
result := self._§_Seq_Foo(...); // actual code of Foo
_$_sync_policy._$_post_sync_ReadOps(state);

return result;

Figure 8.2: Algorithm for synchronisation wrappers in GAsp

The name of the pre_sync operation of the generic synchronisation policy is constructed
automatically by prefixing _$_pre_sync_ onto the name of the formal parameter of the policy
that applies to the operation. For example, operation Foo is in the (singleton) set that corre-

sponds to the ReadOps formal parameter of the policy so the synchronisation wrapper invokes

120



_$_pre_sync_ReadOps. The name of the post_sync operation that is invoked is constructed in
a similar manner.

The pre_sync operation of the generic synchronisation policy returns some state informa-
tion which the synchronisation wrapper must pass as a parameter to the post_sync operation.
The state returned by a policy implemented in Esp is an instance of the Invocation class
denoting this_inv. However, a policy implemented in a different mechanism might return
back state of a different kind.

If a formal parameter of a generic synchronisation policy itself takes parameters then these
are passed as parameters to its pre_sync operation. For example, let us denote a shortest job

next scheduler as follows:
policy SJN[ Ops|length: Int] |

In this case, _$_pre_sync_Ops operation of the policy takes a single parameter that corresponds
to the length parameter of Ops. As an example of this, consider the class in Figure 8.3
which instantiates the SJN policy upon operations A and B of a class. The synchronisation
wrappers generated for A and B would pass size and len, respectively, as a parameter to

_$_pre_sync_Ops.

class Foo {
A(...size: Int ...){ ... }
B(...len: Int ...) { ... }
synchronisation

SIN[ <Alsize] B[len]> ]

Figure 8.3: An example of a class that instantiates the SJN policy

8.5.1.2 Constructors

We said at the start of Section 8.5.1 that if a class instantiates a policy then the compiler
automatically declares an instance variable, _$_sync_policy that is a reference to an instance
of the policy that is instantiated upon the class. It may seem natural that this variable be
initialised by the constructor of the class. However, a class’s constructor may itself be one
of the operations upon which the policy is instantiated. As such, it is necessary to initialise
a synchronised object’s policy before invoking the constructor for that object—otherwise the
synchronisation wrapper of the constructor would try to invoke pre_sync upon an uninitialised
(instance of the) synchronisation policy.

We use an example to illustrate how this is achieved. Consider the following statement

which creates variable Foo and invokes its constructor:
new Foo.make(...)
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If Foo’s class instantiates a generic synchronisation policy then the code generated for the

above statement would be as follows:

Foo := <allocate memory for the object>
tmp := <allocate memory for an instance of the policy>

tmp.make() // invoke the constructor for the policy

Foo. $_sync_policy := tmp

Foo.make(...) // invoke the constructor for the object

If Foo’s class does not instantiate a generic synchronisation policy then the code in the box

would not be generated.

8.5.2 Code Generation for Generic Synchronisation Policies

The GAsp language supports the writing of generic synchronisation policies via the Esp
synchronisation mechanism. However, the concept of generic synchronisation policies is not
restricted to Esp and it is possible to imagine that generic synchronisation policies might be
written in a mechanism other than Esp. (In fact, this is already the case since, as discussed
Section 7.3.4, the GAsP compiler recognises the names of some policies and implements them
via semaphores.) As such, this section discusses the requirements that GAsp makes on the
code generation for generic synchronisation policies. The enforcement of these requirements
ensures that there will be a standard object-(p)code interface to a generic synchronisation
policy, regardless of how it is implemented. Later, in Section 8.6, we discuss code generation
for Esp and show that it conforms to these requirements.

The object-(p)code generated for a generic synchronisation policy must conform to the
following two requirements, both of which have already been informally discussed in Sec-
tion 8.5.1.

The first requirement is that the policy must provide a constructor named make that does
not take any parameters. As discussed in Section 8.5.1.2, this constructor will be invoked
by the run-time system when an instance of the policy is created. This constructor should
initialise all the variables that are required by the implementation of the policy.

The second requirement is that for each formal parameter listed in the signature of the
policy, there must be a pair of pre_sync and posi_sync operations. As mentioned in Sec-
tion 8.5.1.1, the name of the pre_sync (post_sync) operation for a formal parameter is obtained
by prefixing _$_pre_sync_ (_$_post_sync_) onto the name of the parameter.

The pre_sync operation of a formal parameter, Foo, of a policy takes parameters that
correspond to the parameters, if any, of Foo. It returns a value, denoted as state, that can
be of any type suitable for the implementation of the policy.

The post_sync operation takes a single parameter, which is the state returned by its
corresponding pre_sync operation.

We mentioned in Section 7.3.4 that the current implementation of GAsP implements

optimisation by transformation for two particular policies: Mutez and FCFS. The compiler
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generates the same code for each of these two policies. The code generated for the make
constructor initialises a semaphore which the compiler declares as an instance variable of
the policy. The code generated for the presync operation simply performs a wail on this

semaphore while the code generated for postsync performs a signal.

8.6 Implementation Issues Specific to Esp

In this section we discuss aspects of the implementation of GaAsp that are specific to its
support for Esp. Of course, there is a slight overlap in GAsp’s support for Esp and its
support for generic synchronisation policies and thus some minor details presented here would
be different if Esp were implemented outside of the context of generic synchronisation policies.
Such differences are discussed in Section 8.6.5 where we compare the implementation of GAsp

with that of DEsp (which supports Esp but not generic synchronisation policies).

8.6.1 Run-time Variables Required to Implement Esp

Several variables are needed by the run-time in order to implement a policy written in Esp.

These include:

_$_mutex sem This is a semaphore used to implement a critical region in order to ensure

that the synchronisation code contained in a policy is executed in mutual exclusion.

_$ _waiting_list This is a list of all the invocations that are currently waiting to execute

operations.
_$_executing_list This is a list of all the invocations that are currently exzecuting operations.

_8 _sync_ctrs This is an array of integers used to implement synchronisation counters. The
array is big enough to contain a set of three counters for each formal parameter of a

generic synchronisation policy.

The compiler inserts these as instance variables of a policy.
As well as the above-mentioned variables associated with a policy, the compiler also inserts

some instance variables into the Invocation class. These are:

_$_blocking_sem This is a semaphore used to block a process making an invocation until

its guard evaluates to true.

8 op_id This is an integer that indicates the formal parameter of a policy with which
the invocation is associated, e.g., for a ReadersWriler policy it would indicate if the

invocation is a ReadOps or WriteOps. This variable is used for two purposes.

Firstly, it is it is used as an index into _$_sync_ctrs to locate the synchronisation counters

associated with a formal parameter, e.g., ReadOps, of a policy.
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Secondly, as discussed in Section 8.3.4, the linker creates a virtual function table (vtbl)
for each (sequential) class. The linker creates two vtbls for a synchronisation policy.
The first vtbl serves a purpose similar to the vtbl for a class. The second vtbl of a policy
specifies which operations of the policy are guards and actions of formal parameters
of the policy. (The information to create this second vtbl is obtained from the map
construct in the source code of a policy.) The _$_op_id variable serves as an index
into this vtbl to determine what operations to invoke as the guard and actions for an
invocation. If a formal parameter does not have, say, an arrival action then that entry
in the vtbl will be nil. if there is a nil entry in the vtbl for a guard then a default

guard of true is used instead.

The algorithms used in the run-time system to maintain these variables will be discussed

later.

8.6.2 Code Generation for the Constructor of a Policy

Semantic checks in the GAsP compiler ensure that a generic synchronisation policy written by
a programmer has a constructor called make that does not take any parameters. As discussed
in Section 8.5.1.2, when a synchronised object is created, the run-time system will create an
instance of the appropriate policy and invoke this constructor. Obviously, programmers
can use the constructor to initialise any instance variables they have declared. However,
the constructor serves another purpose: the compiler generates code at the start of the
constructor to create and initialise the policy’s instance variables mentioned in Section 8.6.1
that are required by the run-time system.

The code generated by the compiler is based on the pseudo-code algorithm shown in
Figure 8.4. Note that it includes a run-time check to initialise the instance variables required
by the run-time system only if they have not already been initialised. This conditional
initialisation is necessary since GASP supports inheritance of generic synchronisation policies.
As such, it is possible that the constructor of a policy might perform some initialisation and
then invoke the constructor of its parent policy. In this case, the constructor of the parent

policy should not re-initialise these run-time variables.

8.6.3 Code Generation for Pre_sync and Post_Sync

In this section we discuss the code generated in the pre_sync and post_sync operations for
formal parameters of a generic synchronisation policy.

Consider the following signature of a generic synchronisation policy:
policy BBuf] PutOps GetOps Init[Size: Int] ]

For the purpose of this discussion, we will discuss the code generated for the pre_sync and
post_sync of the Init formal parameter. The algorithm of the code generated for pre_sync is

shown in Figure 8.5.
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cons make
{ if _$_mutex_sem = nil then
new _$_mutex_sem.make(1);
new _$_waiting_ list.make_empty_list();
new _$_executing_list.make_empty list();
new _$_sync_ctrs.make(size-of-sync-ctr-array);
endif

// programmer-written constructor code

Figure 8.4: Algorithm used in the constructor of a policy

_$_pre_sync_Init(Size: Int)

var this_inv: Sizelnv;

{
this_inv := <allocate memory for a Sizelnv>;
this_inv._$_blocking_sem.init(0); // set the value of the semaphore to 0
this_inv._$_op.d := <integer denoting the Init formal parameter>
this_inv.OpName := “Init”;
this_inv.Clientld := <Process ID of current process>;
this_inv.arr_time := global_event_clock ++;
this_inv.Size := Size; // assign the parameter
this_inv.make( ); // invoke its constructor
_$_mutex_sem.wait();

_$_waiting list.add_at_end(this_inv);
_$_sync_ctrs[3 x thisinv.opid + 0] ++; // arrival(Init) ++
<invoke the arrival action for this_inv.op_id>
self.evaluate_guards();
_$_mutex_sem.signal();
this_inv._$_blocking_sem.wait(); // block until guard becomes true.

return this_inv;

Figure 8.5: Algorithm used in _$_pre_sync_Init

The pre_sync operation takes a single parameter, Size, corresponding to the formal pa-
rameter of Init. (In contrast, the pre_sync operation for, say, PutOps does not take any
parameters.) The operation declares a variable, this_inv. Recall from the discussion of the
implementation of BBuf, in Section 7.3.1, that the Invocation subclass associated with the

guard of Inil is SizelInv. Thus, this_inv is declared to be of type Sizelnv.
The first part of this algorithm initialises this_inv. Perhaps the only point here that

125




needs explanation is the initialisation of the arr_time of the invocation. This is performed by
atomically accessing and incrementing a global event clock. Atomicity for this is obtained by
inspecting and incrementing the global event clock by a single pcode instruction. Another
approach would have been to declare an event clock as an instance variable of the policy and
access it within the critical region of pre_sync.

Having initialised this_inv, a critical region—implemented via the _$_mutex_sem instance
variable of the policy—is entered. The first statement of this critical region adds this_inv to
the list of waiting invocations. Then the arrival(Init) synchronisation counter is incremented.?
Following that, the synchronisation virtual function table is examined to determine if there
is an arrival action registered for this_inv.op_id, i.e., for Init. If there is, it is invoked, passing
this_inv as a parameter. The final step in the critical region is to evaluate the guards of all
waiting invocations. (The algorithm for this is discussed in Section 8.6.3.1.) Having exited
the critical region, the process blocks itself until its guard evaluates to true. Finally, it returns
this_inv to the caller which, as discussed in Section 8.5.1.1, later passes it as a parameter to
the post_sync operation.

The algorithm for the posi_sync operation is shown in Figure 8.6. It takes this_inv as a
parameter. It immediately enters into a critical region, implemented by the same semaphore
used for the critical region in pre_sync. It removes this_inv from the list of ezecuting invoca-
tions, increments the term(Init) synchronisation counter and invokes the term(Init) action,
if there is one, passing this_inv as a parameter. Finally, it evaluates the guards of all waiting

invocations before exiting the critical region.

_$_post_sync_Init(this_inv: Sizelnv)
{
_$_mutex_sem.wait();
_$_executing_list.remove(this_inv);
_$_sync_ctrs[3 x thisdinv.opid + 2] ++; // term(Init) ++
<invoke the term action for this_inv.op_id>
self.evaluate_guards();

_$_mutex_sem.signal();

Figure 8.6: Algorithm used in posi_sync

8.6.3.1 Evaluation of Guards

Both pre_sync and post_sync evaluate the guards of waiting invocations. The algorithm used

to perform this evaluation is shown in Figure 8.7. In brief, the algorithm iterates over the list

®The arrival, start and term synchronisation counters for each formal parameter of the policy are stored
in a single array of integers. The run-time system calculates the appropriate index into the array to access a

particular counter.
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of waiting invocations, evaluating the guard of each in turn. If a guard evaluates to true then
the following happens: the process blocked on this invocation is woken up and permitted to
start execution; the relevant start counter is incremented; the invocation is moved from the
waiting list to the executing list; and the relevant start action is executed. Furthermore, the
evaluation of a guard to true restarts the iteration over the list of waiting invocations. This
is because code executed at the start event updates some synchronisation variables which

may, in turn, cause other guards to evaluate to true.

evaluate_guards()

var curr_inv: Invocation
exec_inv: Invocation
go_again: Boolean

guard_res: Boolean

go_again := true;
while go_again do
go_again := false;
currinv := self._§_waiting list.head();
while curr_inv = EndOfList and not go_again do
if <evaluate guard for curr_inv> then
exec_inv := curr_inv;
currinv := currinv.next();
exec_inv._$_blocking_sem.signal(); // wake up the invocation
_$_sync_ctrs[3 x exec_inv. $_opid + 1] ++; /] exec(...) ++
_$_waiting_list.remove(exec_inv);
_$_executing_list.add_at_end(exec_inv);
<invoke the start action for exec_inv.op_id>
go_again := true;
else
curr_inv := currinv.next();
endif
end

end

Figure 8.7: Algorithm for evaluate_guards

8.6.4 Code Generation for Other Synchronisation Constructs

The discussion so far has focussed on code generation and run-time support at the level

of entire operations. This section discusses code generation and run-time support for Esp
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constructs that are used at the statement level.

8.6.4.1 Synchronisation Counters

Section 8.6.1 mentioned that the _§_sync_cirs instance variable of a policy is an array that
stores the values of synchronisation counters. As shown in Figures 8.5, 8.6 and 8.7, the main-
tenance of these counters takes place in synchronisation wrappers. With such infrastructure
in place, the actual accessing of a counter, say, start(Foo), is trivial. Code is generated that
simply indexes into the synchronisation counter to retrieve the appropriate value. Note that
only the arrival, start and term counters are explicitly maintained. The other two counters

are evaluated by the run-time system as follows:

wait = arrival — start

exec = starl — term

8.6.4.2 Scheduling Predicates

As previously discussed in Section 5.6 on page 76, scheduling predicates are simply a syn-
tactic shorthand for a common-or-garden looping construct, and implemented accordingly.
A slightly more interesting aspect of compiling a scheduling predicate is the handling of the
expression over which the predicate iterates.

Expressions such as waiting(Ops) have a type of “Collection[(subtype of) Invocation]”.
However, the standard Dee class Collection is an abstract class that cannot be instantiated
directly. As such, the code generated for an expression such as waiting(Ops) creates a List
(which is a concrete subclass of Collection). The actual code generated for the expression
waiting(Ops) implements the algorithm shown in Figure 8.8. Note that this algorithm iterates
over the list of all pending invocations in order to find those that are Ops. As such, it is an

O(N) algorithm, where N is the number of pending invocations.

list := new List.make(); // this will hold the result of waiting(Ops)
inv := _$_waiting list.head();
while inv != EndOfList do
if inv.opdid = <the opid of formal parameter Ops> then
list.add(inv);
endif

inv := inv.next();

end

Figure 8.8: Run-time algorithm to evaluate the expression waiting(Ops)

A common case is for, say, the waiting expression to refer to all the pending invocations.

For example, consider the following policy signature:

policy SJIN[ Ops|Size: Int] |
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For such a policy, the expression waiting(Ops) refers to all pending invocations since Ops
is the only formal parameter of the policy. In this case, there is no need to make a copy of

_$_waiting_list: the code generated just returns the list itself.

8.6.5 Comparison with the Implementation of Esp in Desp

Most of the details of the implementation of Esp in GAsP also apply to the implementation
of Esp in DEsp. However, there are a few small differences that are due to the fact that
DEsp does not support generic synchronisation policies. In this section we briefly outline
these differences.

In DEsP, sequential code and synchronisation code are written in the same class. The
compiler uses semantic checks to ensure that synchronisation code does not try to access
sequential operations or instance variables of the class, and vice versa. The GAspP compiler
does not have any need for such semantic checks since synchronisation code is written in a
separate class (policy).

In GaAsp, synchronisation counters are expressed in terms of the formal parameters of a
policy. As such, GAsp allocates a set of synchronisation counters for each formal parameter
of a policy. In DEsP, synchronisation counters are expressed in terms of operations and hence
Desp allocates a set of synchronisation counters for each (sequential) operation defined in
a class. This is somewhat wasteful of space, especially since it is possible that not all the

sequential operations of a class will be synchronised.

8.7 Run-time Performance

There are two main factors that affect the time spent executing synchronisation code in GAsp.

The first is resource contention. The prototype implementation of GAsp evaluates the
guards of all pending invocations at each event. In other words, the number of guards
evaluated at an event rises linearly with the number of pending invocations.

The other main factor that affects the amount of time spent executing synchronisation
code is the complexity of guards. Put simply, simple guards evaluate quicker than more
complex guards, especially guards that contain scheduling predicates.

A less important factor is the presence of actions. This is because an action is executed just

once per invocation, unlike a guard which might be evaluated multiple times per invocation.

8.7.1 Measuring Performance

Several programs were written in order to measure the run-time cost of synchronisation code.
The programs were all based on the same template: a client object created a number of
child processes to make concurrent invocations upon a service object. The programs we used

varied from one another in two respects.
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The first way the programs varied from one another was in the synchronisation policy that
was instantiated upon the service object. In this way we were able to measure how the run-
time overhead of synchronisation varied with complexity of synchronisation code. One policy
was mutual exclusion, implemented via a simple guard. A second policy also implemented
mutual exclusion, but this time by using actions to maintain its own counters and writing the
guard in terms of these counters (as in Figure 4.2 on page 48). A third policy implemented a
first-come, first-served policy via a scheduling predicate. Finally, we instantiated a first-come,
first-served policy that the compiler optimised and transformed into semaphore operations.

The second way test programs varied from one another was in the number of worker
processes that were created. In this way, we could measure how synchronisation overhead

increased with contention for the service object.

8.7.2 Performance Figures

The graph in Figure 8.9 shows the synchronisation overhead for operation invocation for the

different policies previously mentioned.
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Figure 8.9: Run-time overhead of synchronisation

It should be noted that for the unoptimised synchronisation policies, there is an over-
head of six semaphore operations per operation invocation.® It is important to note that

this overhead is fized, i.e., it does not increase with resource contention. In the prototype

5Two semaphore operations are used to implement the critical region for pre_sync and another two for
post_sync. A fifth semaphore operation blocks an invocation until its guard evaluates to true and the sixth is

used to wake up this invocation.

130



implementation, a semaphore operation executes as a single pcode instruction. However, on
a real CPU semaphore operations might require hundreds of instructions to implement and
thus readers should mentally “shift up” the graphs to take into account a realistic overhead
for these six semaphore operations. Since the overhead due to semaphores is fixed, the slopes
of the graphs will not be affected.

Aside from semaphores, all the pcode instructions used to implement synchronisation code
are of comparable power to instructions on a real CPU. Thus, one could expect to obtain
similar performance-measuring graphs if DESP were ported to a real CPU. Obviously, the
exact figures would be different from one CPU to another but the basic characteristics of the

graphs would be similar.

Optimised FCFS policy. Ascan be seen from bottom-most plot in the graph of Figure 8.9,
the synchronisation overhead for the optimised FCFS policy is constant, regardless of resource
contention. This is because its implementation via a semaphore avoids the necessity of guard
re-evaluation at each event. The actual overhead of this policy is 20 pcode instructions. This
includes one instruction to wait on a semaphore and another to signal the semaphore. The
remaining 18 instructions are due to procedure call overhead in the synchronisation wrapper
which, as shown in Figure 8.2 on page 120, makes three calls. Two out of these three calls are
to invoke pre_sync and post_sync. The 12 instructions required for these two calls represents
the run-time overhead of GSPs. This seems like a small overhead for the benefits that generic
synchronisation policies bring. Of course, it is possible to imagine that a compiler or linker
might be capable of in-lining the calls to pre_sync and post_sync, thus avoiding any run-time
overhead for the use of GSPs. However, the implementation of such a system is outside the
scope of this thesis.

The other plots in the graph of Figure 8.9 are for policies that are implemented in Esp

and are not optimised. We discuss each of these in turn.

The mutual exclusion policies. Two of the plots in the graph of Figure 8.9 are for
mutual exclusion policies.

The lower of these two plots is for the policy implemented via a simple guard of the form:
Ops: ezec(Ops) = 0;

As previously stated, the number of guard re-evaluations at each event is proportional to the
number of pending invocations. This results in a linear rise in the cost of synchronisation, as
can be seen from the plot.

The other implementation of mutual exclusion plotted in Figure 8.9 uses events to main-
tain, what are in effect, synchronisation counters and these are then used in a guard. (The
algorithm for this was shown previously in Figure 4.2 on page 48.) The presence of the actions
results in a higher initial overhead for the implementation of the policy. This overhead works

out to be 11 pcode instructions for each of the three actions. (The figure of 11 instructions
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consists of 4 instructions to actually invoke an action and 7 instructions to execute the body
of the action.) The overhead of these actions is constant, i.e., it does not affect the slope of
the graph. From looking at the graph it may appear that the actions add a relatively large
amount of overhead. However, this is not the case since the run-time overhead of the synchro-
nisation mechanism, irrespective of whether or not actions are used, includes six semaphore
operations. If the plots were shifted up to reflect the true cost of these semaphore operations
then it would be apparent that the additional overhead of using actions is negligible. This
means that a synchronisation mechanism that employs guards can also provide programmers
with the ability to execute actions at events—thereby increasing the mechanism’s expressive
power—at very little extra cost.

The guard of this mutual exclusion policy is expressed in terms of the programmer-
maintained counters. This takes slightly longer to evaluate than a similar guard expressed in
term of the automatically-maintained ezec counter; hence the slight difference in slopes for
the plots of synchronisation overhead for the two implementations of the mutual exclusion

policy.

Unoptimised FCFS policy. The top-most plot in the graph of Figure 8.9 is for the first-

come, first-served policy implemented via a scheduling predicate of the form:

Ops: ezec(Ops) =0

and there_is_no(f in waiting(Ops): f.arrtime < this_inv.arr_time);

As can be seen, the presence of a scheduling predicate adds significantly to the cost of
synchronisation. One might expect that the cost of including a scheduling predicate in a
guard would be O(N?), where N is the number of waiting invocations. However, most times
that the guard is evaluated, the conjunct “ezec(Ops) = 0” will be false and this will “short-
circuit” the condition’s evaluation, thus avoiding evaluation of the scheduling predicate. For
this FCFS policy, this “short-circuit” evaluation results in the predicate being evaluated only
once per invocation rather than N times at each event. Thus, for this particular policy the
presence of a scheduling predicate does not result in O(N?) overhead for synchronisation.

However, it may for other policies.

8.7.3 Discussion

The plots in the graph of Figure 8.9 show that, in an unoptimised implementation of Esp,
the synchronisation overhead for an invocation upon a synchronised operation is in the region
of hundreds or thousands of instructions. This overhead precludes the use of an unoptimised
implementation of Esp in fine-grained concurrent applications. However, this synchronisation
overhead may be acceptable for applications that employ concurrency at a coarser granularity.

If usage of EsP is not to be restricted to coarse-grained concurrent systems then optimisa-
tion techniques become of some importance. Although we briefly outlined some optimisation

techniques in Section 4.4 and implemented a sample of optimisation by transformation to
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prove its feasibility, the issue of optimisation is one that has not been addressed in depth in
this thesis.

While optimisation for Esp may be difficult, the technique of optimisation by transforma-
tion seems ideally suited for generic synchronisation policies. This suggests that in a language
to be used for writing fine-grained concurrent applications, generic synchronisation policies
may be more important than an expressively powerful synchronisation mechanism such as
Esp.

It is important to note that the synchronisation overhead is for invocations upon synchro-
nised operations only. The introduction of synchronisation into the host language, Dee, has
not introduced any execution-time overhead for invocations upon unsynchronised operations.

Similarly, instances of classes that do not instantiate a synchronisation policy do not
pay any space overhead since the compiler inserts the instance variables required for the
implementation of EspP and generic synchronisation policies only in those classes where they
are required. The only space overhead paid for by all classes, regardless of whether or not
they are synchronised, is that the virtual function tables are larger, due to there being two
entry points for each operation (as discussed in Section 8.4.2). This will result in a slight

increase in the size of executable files but no per-object space or time overhead.

8.7.4 Related Work

It seems that very few designers of synchronisation mechanisms provide details of the run-time
overhead of synchronisation in papers that they write.

One notable exception is Matsuoka et al. [Mat93] [MTY93] [TM93] who provide details of
the run-time overhead of synchronisation in their implementation of the ABCL language on
a massively parallel computer. ABCL supports concurrency between objects but not within
an object. This simplifies their task of implementation somewhat, but even so they have
achieved very impressive results: a synchronised invocation takes just a dozen or so CPU
instructions more than an unsynchronised call.

One interesting optimisation technique used in ABCL is for the compiler to generate
several virtual function tables for a synchronised class. As a simplified example, consider a
bounded buffer that can be in one of the following states: empty, partial or full. Whether or
not a particular operation on a bounded buffer will execute immediately or will be delayed
depends on the current state of the buffer. Thus, the entry for the Put operation in the
virtual function tables for the empty and partial states might point directly to the sequential
code that implements Put, while the entry in the table for the full state would point to a
routine that queues the invocation for later processing. This use of multiple virtual function
tables integrates some of the synchronisation overhead with the standard vtbl-lookup which
is done for an invocation, regardless of whether it is synchronised or not.

Bergmans [Ber94] uses a technique similar in purpose to the re-evaluation matrix (dis-
cussed in Section 4.4.1) to reduce how often guards have to be evaluated. With the profiling

tools available to him, Bergmans was able to measure the reduction in total execution time
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of test programs but not the reduction in time spent executing synchronisation code. As
such, it is known that the optimisation technique in question works but it is not known how

effective it is.

8.8 Summary

This chapter has discussed the implementation of both Esp and generic synchronisation
policies in our GASP prototype.

We have shown that both Esp and GSPs can be implemented in a straight-forward man-
ner.

Our performance analysis of Esp shows that the run-time overhead of synchronisation
is hundreds or thousands of instructions per invocation of an synchronised operation. This
suggests the need for optimisation, which is an issue that this thesis does not explore in
depth.

We have shown that the overhead of using generic synchronisation policies in preference to
writing synchronisation code directly in a class is about a dozen instructions per operation in-
vocation, which is a relatively small overhead compared to the overhead of Esp. Furthermore,
generic synchronisation policies can be used to implement optimisation by transformation

which can reduce the overhead of Esp significantly.
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Chapter 9

Open Issues for Generic

Synchronisation Policies

Chapter 7 addressed basic issues concerning language support for generic synchronisation
policies and Chapter 8 discussed the implementation of the GAsp prototype which provides
such support. In this chapter we discuss some issues regarding generic synchronisation policies
that have not been addressed in our GASP prototype.

This chapter is structured as follows. We start in Section 9.1 by discussing how defining
a standard, object-code interface to generic synchronisation policies raises some interesting
possibilities. Then in Section 9.2 we discuss the possibility of a subclass being able to in-
crementally modify the instantiation of a synchronisation policy in its parent class. Finally,
Section 9.3 raises the possibility of being able to instantiate several policies upon the opera-

tions of a class.

9.1 A Standard, Object-code Interface to Generic Synchroni-

sation Policies

In Section 8.5.2 we said that the GAsp compiler defines an object-code interface to generic
synchronisation policies. If this, (or a similar) object-code interface were adopted as part of a
language standard then it would mean that programmers would have complete freedom in how
they implemented a generic synchronisation policy (as long as its compiled code conformed to
the standard, object-code interface). In particular, a programmer could implement a policy
in a synchronisation mechanism of choice.

One benefit of having a standard, object-code interface to policies has already been ad-
dressed in previous chapters: it makes it possible for the compiler to perform optimisation
by transformation. For example, it makes no difference to a class that instantiates, say, a
Mutex policy whether that policy is implemented as a guard or as semaphore operations.

Another possibility is that several synchronisation mechanisms might be supported at the

language level. Of course, a language might do this without the aid of generic synchronisation
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policies; however, GSPs make this more feasible by completely separating synchronisation
code from sequential code and thus preventing interaction between different synchronisation
mechanisms and sequential code which in turn keeps language complexity down.

A potential advantage of supporting several synchronisation mechanisms in a single lan-
guage is that it enables programmers to choose whichever mechanism they want to use. For
example, a programmer might initially implement a complex scheduling policy in a high-level,
but inefficient synchronisation mechanism, e.g., an unoptimised version of Esp. If later, dur-
ing execution-time profiling of an application, it is discovered that the a substantial amount
of time is being spent executing the code of this policy then the programmer may decide to
re-implement it in a lower-level, and more efficient, synchronisation mechanism.

Instead of supporting several synchronisation mechanisms, a language might support none
and force programmers to fulfill all of their synchronisation requirements by instantiating
policies that have been implemented in a different language. The advantage of this is that,
by not supporting any synchronisation mechanism, the language is kept as small as possible
which simplifies the task of compiler writers. In particular, it is likely to be easier to extend
an existing language to enable it to instantiate generic synchronisation policies than it is to
extend the same language with a synchronisation mechanism.

Of course, if a general-purpose programming language can instantiate generic synchro-
nisation policies but cannot be used to write them then a different language is needed to
actually implement GSPs. Since this latter language is quite specialised (it might be used
only to write synchronisation policies) it is likely be smaller and easier to implement than a
general-purpose language. For example, Path Expressions [CH73] is usually considered to be
a synchronisation mechanism; However, it could be considered to be a complete, specialised
language used to implement generic synchronisation policies.

A final idea is that future operating systems might provide efficient implementations of
commonly used synchronisation policies as system services. These system services could then

be encapsulated as generic synchronisation policies for use by programmers.

9.2 Incremental Modification of Inherited, Instantiated Poli-

cles

In Section 7.3.1.1 we mentioned that, by default, a subclass in GASP inherits the instantiated
policy “as is” from its parent class, but that it is free to re-instantiate the same policy (or
instantiate a different policy). In this section, we discuss another possibility, albeit one that
is not supported in the current implementation of GAsp.

Often the instantiation of a generic synchronisation policy in a subclass will be similar to
the instantiation of a policy in its parent class. In such cases it would be useful to be able
to express the instantiation of a policy in a subclass as an incremental modification of the
policy instantiation in the parent class.

For example, consider a class that instantiates the ReadersWriter policy as follows:
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ReadersWriter[ {A, B}, {C} ]

If a subclass introduces a write-style operation, D, then it might instantiate the Readers Writer

policy as follows:
ReadersWriter| super.ReadOps, super.WriteOps + {D} ]

Here we see that the first actual parameter to the subclass’s synchronisation policy is inherited
“as is” from the corresponding parameter to the synchronisation policy of its parent class.
The second actual parameter is inherited and incrementally modified by means of the “+”
(set union) operator.

As another example to illustrate the incremental modification of the instantiation of a
generic synchronisation policy, consider a subclass that, instead of introducing a new op-
eration, re-implements operation B and in doing so makes it a write-style operation. The

subclass might express this change as follows:
ReadersWriter| super.ReadOps — {B}, super.WriteOps + {B} ]

The use of “super” need not be confined to the actual parameters of an instantiated
policy; it might also be used to refer to the actual policy instantiated. For example, the

previous example could have been written as:
super.policy| super.ReadOps — {B}, super.WriteOps + {B} ]

If, sometime later, a programmer modified the parent class so that it instantiated, say, the
ReadersPriority rather than the Readers Writer policy then this change would automatically
be reflected in the subclass. Of course, this only works because the ReadersWriter and
ReadersPriority policies both use the same names for their formal parameters. If a program-
mer changed the policy in the parent class to be, say, Mutezx, then the subclass would no

longer compile because the expression “super.ReadOps” would no longer make sense.

9.3 Instantiating Several Policies on the Operations of a Class

It is likely that some classes will have idiosyncratic synchronisation requirements that cannot
be handled by already-written generic synchronisation policies. For example, a bounded
buffer policy, BBuf, might be instantiated upon the following sets of operations: PutOps,
GetOps and Init (a constructor that takes the size of the buffer as a parameter). However,
a particular bounded buffer class might also contain other operations that do not fit neatly
into these categories, e.g., operations that return the state of the buffer such as IsFEmply and
IsFull.

One way to tackle classes with idiosyncratic synchronisation requirements would be to
write new generic synchronisation policies that are tailored to their exact needs. However,

there are two problems with this approach.
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Firstly, creating several variations on policies such as BBuf, Mutex, ReadersWriter and
SJN would quickly lead to name-space pollution.

Secondly, this approach goes against the spirit of genericity since many “generic” policies
would be written for a specific class and would probably be instantiated upon only that class.

We feel that a better approach to the problem of classes that have idiosyncratic synchro-
nisation requirements is to provide language support that allows programmers to instantiate
several policies upon the operations of a class. In this way, existing generic synchronisation
policies can be combined in order to effect variations of them. We illustrate the concept in
Section 9.3.1 through some examples and then in Section 9.3.2 we briefly discuss some of the
problems that need to be addressed in order to be able to support this ability of instantiating

several policies upon a single class.

9.3.1 Examples

In this section we present some examples to illustrate how it can sometimes be useful to
instantiate several generic synchronisation policies on a single class in order to combine them

to better suit the synchronisation needs of the class.

Overlapping Readers Writer Policies

Consider the sequential code of the class on the left in Figure 9.1. Since operation A examines
(reads) instance variables and the other two operations, B and C, update (write) them, one

might consider that a suitable synchronisation policy for this class would be:
ReadersWriter[ {4}, {B, C}]

However, this is needlessly restrictive since the write-style operations, B and C, update
different instance variables—hence there is no reason why the execution of one should restrict

the execution of the other.

class Foo { class Foo {
int x,y; // instance variables int x,y; // instance variables
A(..){...; “examinex & y7; ... } A(..){...; “examinex & y7; ... }
B(...){...; “update x”; ... } B(...){...; “update x”; ... }
C(...){...; “update y”; ... } C(...){...; “update y”; ... }
synchronisation synchronisation
ReadersWriter[ {A}, {B, C} |; ReadersWriter[ {A}, {B} [;
} ReadersWriter[ {A}, {C} [;
}

Figure 9.1: Right: a class with an overly restrictive synchronisation policy. Left: Instantiating

Readers Writer multiple times in order to remove the restriction.
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In order to remove this unnecessary restriction on concurrency, one might consider each
instance variable in turn and note the manner in which it is accessed by operations. In this
case, we note that variable z is examined by A and updated by B. Thus the following policy

would be suitable to protect z alone:
ReadersWriter[ {4}, {B}] /1/

Similarly, variable y is examined by A and updated by C'. Thus, the following policy would
be suitable to protect y:

ReadersWriter| {A}, {C}] /2/

With the ability to instantiate multiple synchronisation policies on a class, these two instan-
tiated policies might be combined as shown in the class on the right in Figure 9.1.

Note that the semantics of combining synchronisation policies implemented as guards is
quite intuitive: simply and the guards together. To see this, consider that policy /1/ might

be expressed as the following guards:

A: ezec(B) = 0;
B: exec(A, B) = 0;

Similarly, policy /2/ might be expressed as the following guards:

A: ezec(C) = 0;
C: exec(A, C) = 0;

Combining these two sets of guards would yield:

A: ezec(B) = 0 and ezec(C) = 0;
B: exec(A, B) = 0;
C: exec(A, C) = 0;

Combining BBuf with Readers Writer

One usually thinks of a bounded buffer containing operations Pul and Get, and perhaps a
constructor that takes a parameter indicating the size of the buffer. A generic synchronisation
policy, say, BBuf, might be written that is suitable for such a class. However, if a bounded
buffer class also contains other operations, e.g., IsFmpty and IsFull, then the BBuf policy
would not be suitable for the class. The class in Figure 9.2 illustrates one way to tackle
this problem. It instantiates the BBuf policy but also instantiates Readers Writer to prevent
IsEmply and IsFull executing while the buffer is being updated by Put and Get. The rule

of and-ing together guards works fine in this example.
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class Buffer {
// instance variables
Buffer(int Size) { ... } // constructor

Put(...){ ...}
Get(...) { ...}

IsEmpty(...) {... }
IsFull(...) {... }

synchronisation
Bbuf[ {Put}, {Get}, {Buffer[Size|} ];
ReadersWriter[ {IsEmpty, IsFull}, {Put, Get} |;

}

Figure 9.2: A bounded buffer that combines the BBuf and Readers Writer policies

Instantiating Mutex Multiple Times on a Class

Consider a class that contains four operations—A, B, ' and D—each of which updates

instance variables. One might consider employing the following policy upon this class:
Mutex| {4, B, C, D} ]

However, if the operations update disjoint sets of instance variables then this policy would be

overly restrictive. Instead, one might instantiate Mutex several times, as shown in Figure 9.3.

class Foo {
. // instance variables
synchronisation
Mutex|[ {A} ];
Mutex[ {B} |;
Mutex[ {C} [;
Mutex[ {D} |;
}

Figure 9.3: A class that instantiates the Mutez policy multiple times

9.3.2 Issues to be Addressed

The examples in Section 9.3.1 illustrate the utility of combining generic synchronisation
policies by multiple instantiations on a class. However, until there has been extensive usage
of GSPs in practice, it is difficult to know for sure just how important this capability is. One
thing is certain, however; in order to provide support for such multiple instantiations, some

issues need to be addressed. This section briefly outlines what these issues are.
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Defining the semantics of combining multiple policies In Section 9.3.1 we said that
the semantics of combining synchronisation policies expressed as guards is quite intuitive:
simply and the guards together. However, unless a GSP-based synchronisation mechanism
is to be restricted to consist of guards alone then the semantics of combining other synchro-
nisation constructs needs to be defined too.

For example, Esp code can consist of actions and programmer-maintained synchronisation
variables as well as guards so semantics need to be defined for the combining of actions and
variables from different policies. A first attempt at defining suitable semantics might be as

follows:

o Keep the synchronisation variables of different policies separate from one another. This
is necessary in order to avoid conflicts, e.g., one policy might have a synchronisation
variable, foo, of type Int while another policy might define a variable of the same name

to be of type Bool.

e At a particular event, execute (in an unspecified order) the actions, if any, that the

different policies specify for that event.

e An invocation cannot start execution until the guards specified for it by all the differ-
ent policies evaluate to true, i.e., the effective guard for an invocation is the and-ing

together of all the guards from different policies for that invocation.

With each policy having its own synchronisation variables, the policies, in effect, run in step
with one another. It appears that this will lead to intuitive semantics for combining policies
but we have not considered this at length to determine if this is, in fact, the case.

It should be noted that separation of synchronisation variables of different policies pro-
duces a difficulty: each policy would have to maintain its own lists of waiting and executing
invocations. Storing multiple copies of invocations is certainly wasteful of memory. It may
also lead to extra run-time overhead in determining which invocations from different policies
correspond to one another.

It should also be noted that the ability to combine several policies will probably require
an approach to implementation that is more complex than that required for non-combined

policies.

Semantic subtleties of combining multiple policies. Another difficulty with the use
of multiple generic synchronisation policies is the subtle ways in which different policies
might interact with each other and result in deadlock. For example, consider the class in
Figure 9.4 which instantiates both a first-come, first-served (FCFS) policy and a Shortest Job
Next scheduler upon operation A. These two policies conflict with each other in scheduling
invocations for execution and will cause deadlock if jobs do not happen to arrive in order
of increasing length. Corradi and Leonardi also warn of the dangers of combining several

incompatible constraints [CL91, pg. 50].
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class Foo {

A(int length, ...) { ... }
synchronisation

FCPS[ {A} )

SIN[ {A[length]} |;

Figure 9.4: Instantiating conflicting scheduling policies upon a class

Another example of inadvertent deadlock caused by combining incompatible synchronisa-
tion policies can be found in papers on the VCP system [CGM91, GC92]. One example given
in these papers to illustrate how VCP’s synchronisation mechanism interacts with inheritance

is as follows.

A bounded buffer class is written which includes guards of the form:

Put: ezec(Put) = 0 and term(Put) — term(Get) < Size;
Get: exec(Get) = 0 and term(Put) — term(Get) > 0;

A subclass of this bounded buffer modifies the synchronisation policy to give priority to Get
invocations over those of Put. Towards this goal, the constraint “wait(Get) = 0” is added to
the guard of Put. Unfortunately, this new constraint causes deadlock. To see why, consider
a buffer that is currently empty and has some pending Get invocations. If a Put invocation
arrives then it cannot proceed due to these pending invocations. Conversely the pending
Gel invocations cannot proceed until the Put invocation executes and thus makes the buffer

non-empty. With neither Pul nor Get able to execute, the buffer is deadlocked.

In VCP, guards are not written in the form we have shown but rather individual con-
straints are given names (e.g., mutex or priority) and these are then combined to form what
are, in effect, guards. Although VCP’s named constraints are not generic in nature, they are

similar to generic synchronisation policies in that they provide a layer of abstraction.

The authors of the VCP papers claim that such abstraction helps in the writing of complex
guards. This claim is based on an example which uses VCP’s abstraction mechanism to
combine three different variations of a bounded buffer policy, one of which is the deadlocking
get-priority policy already discussed. The authors claim that compared to the abstractions
that are used, the equivalent guards “are surprisingly complex and, surely, difficult to directly
design and reuse” [GC92, pg. 5]. The irony is that the authors make such a statement
while being unaware of the deadlocking bug in their own code. This clearly illustrates that
modifying synchronisation policies (whether by incremental modification during inheritance
or by combining several abstract/generic policies together) can result in unforeseen, and

unpleasant, semantic subtleties.
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9.4 Summary

This chapter has discussed some issues concerning generic synchronisation policies that are
not addressed in the current implementation of Gasp.

One limitation of GAsp is that it does not permit a subclass to incrementally modify
the instantiated policy in its parent class. Instead, a subclass must either inherit its parent
class’s instantiated policy “asis” or re-instantiate it anew. We shall return to this subject in
Part IV which focuses on the issue of inheritance in COOPLs.

Another limitation is that Gasp does nor provide programmers with the ability to in-
stantiate several policies upon the operations of a class. We feel that such a capability would
be useful but recognise that it may be difficult to implement.

A third topic discussed in this chapter was not a limitation of Gasp, but rather the
interesting possibilities that are presented by having a standard, object-code interface to

generic synchronisation policies.
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Chapter 10

Related Work and Summary of

Contributions

Part III of this thesis has focussed on the feasibility of providing language support for generic
synchronisation policies. This chapter brings Part III to a close. We start off in Section 10.1
by discussing how several other languages attempt to support generic synchronisation poli-
cies. Then in Section 10.2 we summarise own own contributions to this area. Finally, in

Section 10.3 we recap on some limitations of our work and suggest areas for future research.

10.1 Related Work

We know of four languages, other than GAsp, that provide support, in one form or another,
for generic synchronisation policies: DRAGOON, Demeter, HECTOR and Parallel Objects.
Unfortunately, all of these languages have limitations in the support that they offer. These
limitations are discussed in Sections 10.1.1 through to 10.1.4.

Writing synchronisation code in terms of abstract sets of operations is central to generic
synchronisation policies. Abstract sets of operations are also employed in the Enabled-sets
synchronisation mechanism. This raises the question whether Enabled-sets would be a suit-

able basis for supporting GSPs? This issue is discussed in Section 10.1.5.

10.1.1 Dragoon

Next to GAsp, the language which provides the best support for GSPs is probably DrAG-
ooN [Atk90]. However, DRAGOON’s support for generic synchronisation policies has some

limitations as we now discuss.

10.1.1.1 Confusion of Inheritance and Genericity

In DRAGOON, generic synchronisation policies are referred to as behavioural classes. Unfortu-

nately, it appears that the DRAGOON language designers were not fully aware of the generic
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nature of behavioural classes when originally designing the language. Some examples that

illustrate this lack of appreciation for the generic nature of behavioural classes are as follows:

e From the earliest papers published on DRAGOON[MCB*89, GMC*89], the application
of a behavioural class upon a sequential class has been consistently referred to by the
term behavioural inheritance which is said to be “a form of multiple inheritance” [Atk90,
pg. 103]. The fact that these papers talked about the inheritance of behavioural classes
rather than their instantiation suggests that the language designers had confused the

concepts of genericity and inheritance.

e Originally the only formal parameter type for behavioural classes were sets of operation
names. However, in an attempt to increase expressive power, some proposed extensions
to DRAGOON’s synchronisation mechanism [RAPG91] permitted other types of formal
parameters to be specified, such as integer constants and functions that returned the
state of the object being synchronised. The keyword generic was also introduced.
However, this keyword was used only with behavioural classes that contained one or
more of the new formal parameter types. In particular, the generic keyword was not
retro-fitted to the original style of behavioural class which indicates that the language

designers did not consider the original style of behavioural class to be generic.

This confusion regarding the generic nature of behavioural classes has left its mark on
the DRAGOON language. In particular, the use of “behavioural inheritance” to instantiate

generic policies has several disadvantages, which we now discuss.

Inconvenience for programmers. There are several practical ways in which behavioural
inheritance is less convenient for programmers than the ability to instantiate generic synchro-

nisation policies in-line as we have advocated for DEsP:

e Firstly, the only way to create a synchronised class is to create a sequential version, say,
class Person, and then use behavioural inheritance to create the desired synchronised
class, say, MutezPerson. Programmers have to create both of these classes even if they

have no need for the sequential class. This can result in name-space pollution of classes.

e Secondly, there is more syntactic baggage, and hence typing, involved in behavioural
inheritance. This may seem like a petty issue but it can be disheartening to program-
mers when the amount of typing it takes to instantiate a generic synchronisation policy

is often as long as the implementation of the synchronisation policy itself.

Language inconsistencies. Aside from practical issues, behavioural inheritance has in-
troduced inconsistencies into the language. In particular, programmers cannot inherit from a

“behavioured class”, i.e., a class that is the result of behavioural inheritance. This can result

! More recently, the core concepts of behavioural classes have appeared, under different syntax, as a proposal

for Ada9X [AW93]. The syntax of this new proposal indicates all the formal parameter types as being generic.
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in idiosyncrasies in the type system of the language. For example, Student may be a subclass

of Person but MutexStudent cannot be a subclass of MutexPerson.

10.1.1.2 Limited Expressive Power

Originally, DRAGOON’s behavioural classes took just a single type of formal parameter: sets
of operation names; no other information about invocations of operations was available,
e.g., relative arrival times, parameters or synchronisation local variables. Because of this,
DRAGOON’s synchronisation mechanism had limited expressive power.

Proposed extensions [RAPG91] introduce additional types of formal parameters and five
new constructs to compliment the original two (synchronisation counters and access to in-
stance variables via functions) in an attempt to increase its expressive power. Thus the
increase in expressive power has been at the cost of creeping featurism and the resulting

complexity that it brings.

10.1.1.3 Lack of Separation of Synchronisation Code from Sequential Code

One of the parameter types for DRAGOON’s behavioural classes is a function that can be
invoked by the synchronisation code in order to examine the instance variables of the sequen-
tial object being synchronised. This, of course, has the drawback that the programmer of a
sequential class may have to write such functions if they do not already exist in the class.
Furthermore, as discussed in Section 2.2, access to the instance variables (albeit indirectly

via function calls) by synchronisation code is dangerous,

10.1.2 Demeter

Although Lopes and Lieberherr never use the term “generic synchronisation policies,” it is
clear from the motivation they give in their paper [L194] that the “synchronisation patterns”
of their Demeter language are, in essence, meant to be generic synchronisation policies.
Unfortunately, the reality is quite different and synchronisation patterns are far from generic.
In particular, the code of a synchronisation pattern is written in terms of the instance variables
and actual operations of the class that it is to be instantiated upon. Obviously, this means
that a synchronisation pattern can be instantiated upon a different sequential class only if
that class happens to contain identically named instance variables and operations. Needless
to say, this severely restricts the utility of synchronisation patterns as generic synchronisation

policies.

10.1.3 Hector

In HEcTOR [BFS93], synchronisation code can be written in a class by itself which will later
be instantiated upon a sequential class. However, there are some severe restrictions.
Firstly, it appears that the designers of HECTOR do not realise that synchronisation code

can be completely separated from sequential code and thus synchronisation constraints that
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examine “state” are specified in a sequential class. Only non-state constraints can be specified
in the HECTOR equivalent of a generic synchronisation policy. Thus, the expressive power of
generic synchronisation policies is limited.

Secondly, the only formal parameter type of a generic synchronisation policy is an abstract
operation name. Note that this is just the name; no other information about invocations of
operations is available in a generic synchronisation policy. This further limits the expressive
power.

Thirdly, a formal parameter of a generic synchronisation policy denotes a single operation,
rather than a set of operations. Thus it is impossible to write, say, a generic Readers Writer
policy that can be instantiated upon multiple read-style operations and/or multiple write-
style operations.

Finally, the technique used to map the formal parameters of a generic synchronisation
policy onto actual operations of a class is extremely poor: the first formal parameter is
mapped onto the first operation declared in a sequential class, the second formal parameter

is mapped onto the second operation declared, and so on.

10.1.4 Parallel Objects

The Parallel Objects (PO) system [CL91] provides parameterised synchronisation constraints.
These are similar to generic synchronisation policies in that they are instantiated upon opera-
tions. However, their intended usage is different. We have proposed that genericity be applied
to entire policies, while PO advocates that genericity be used at the lower level of individual
constraints. These parameterised constraints are building blocks which, when instantiated,
are combined to form complete policies.

We illustrate PO by an example. The following code uses PO constraints to implement

the readers-priority version of the readers/writer policy:
MazPar(Read) + MaxzSeq(Write) + PriQue(Read, Write)

In this code, the MaxzPar constraint specifies that any number of Read invocations can execute
together. The MazSeq constraint specifies that a Write invocation cannot execute if any other
invocation is executing. The final constraint, PriQue, specifies that Read invocations have
priority over Write invocations.

A library of predefined constraints is supplied with PO and users can add more if they
so wish. Presumably, there is nothing stopping users from writing more complex constraints
which are, in fact, complete policies. However, constraints in PO are instantiated upon
operations rather than sets of operations. Thus it is not clear how one could write, say,
a parameterised ReadersWriter constraint/policy that could be instantiated upon a set of
read-style operations and a set of write-style operations.

Another restriction of the parameterised constraints in PO is the limited expressive power

it offers, which is on level with synchronisation counters.
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10.1.5 Enabled-sets

One of the main concepts in Enabled-sets is that of sels of operations. In this regard, enabled-
sets are related to generic synchronisation policies since they too are expressed in terms of
sets of operations. However, Enabled-sets are unsuited to denote generic synchronisation
policies, as we now discuss.

There is a fundamental difference in how Enabled-sets and GSPs treat sets of operations.

GSPs use sets to denote different types of operations, e.g., PutOps and GetOps in a
bounded buffer, or ReadOps and WriteOps for a Readers Writer policy. This usage of sets of
operations is completely divorced from the details of how a policy might be implemented.

In contrast to this, Enabled-sets associates a set of operations with each state of the
object being synchronised. This state is, in effect, a synchronisation variable and, as such, an
implementation detail of the policy. Such implementation details do not belong in a policy’s
signature definition.

As an example of how the Enabled-sets concept of state is an implementation detail,

consider a Readers Writer policy, denoted here in terms of our GSP notation.
policy ReadersWriter[ ReadOps, WriteOps |

A typical instantiation of this might be:
ReadersWriter[ {Read}, {Write} ]

Consider how this policy might be denoted if sets of operations were associated with state.
An object might be in one of three states: one or more clients might be reading the object, a
single client might be writing it, or the object might be idle. This gives rise to the following

definition:
policy ReadersWriter[ ReadingStateOps, WritingStateOps, IdleStateOps |
A correct instantiation of this is as follows:

ReadersWriter[ {Read}, {}, {Read, Write} |

This can be explained as follows. When in the reading state, only other invocations of Read
may execute. When in the writing state, no other operation may execute (because Write
executes in mutual exclusion)—hence the empty set. Finally, when the object is idle both
Read and Write are permitted to execute (though whichever one starts execution first will
immediately change the state).

These unintuitive states are implementation details that are of no concern to programmers
who simply wish to instantiate the policy. As such, this state information does not belong in

the policy’s specification.
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10.1.6 Summary of Related Work

We have briefly discussed the languages we know of that provide support, in one form or
another, for generic synchronisation policies. Although the treatment of genericity varies
from one language to another, typical limitations that are common to most of the languages

are as follows:

e In most cases, the formal parameters of a policy are instantiated upon individual oper-

ations rather than sets of operations.

e The syntax used to instantiate a policy is unintuitive—usually to the point where one

does not realise that genericity is being employed.

o It seems that the language designers do not realise that synchronisation code can be
fully separated from sequential code without sacrificing expressive power. As such,
policies tend to have limited expressive power and/or are not fully generic since they

are written in terms of, say, the instance variables of a class.

The support we have provided in Gasp for generic synchronisation policies is superior to the
support in these other languages and illustrates that it is possible for a language to support

generic synchronisation policies without restrictive limitations.

10.2 Summary of Contributions

The question of whether it is feasible to provide language support for generic synchronisation
policies has been the focus of Part III of this thesis.

The answer to this question is yes, it is feasible to add support for generic synchronisation
policies to a language. In Chapter 7 we discussed the concerns that arise in providing language
support for GSPs and have resolved them in a satisfactory manner. A summary of these

resolutions is as follows:

e As the Sos paradigm shows, it is possible to completely separate synchronisation code
and data from sequential code and data without losing any expressive power. As such,
the separation from sequential code that genericity imposes upon synchronisation code

does not limit the expressive power of a GSP synchronisation mechanism.

e Also as the Sos paradigm shows, in order to have good expressive power, a synchroni-
sation mechanism requires access to just one primary source of information (invocations
of operations) rather than a half-dozen or more derivative sources. This means that
the formal parameters of a generic synchronisation policy must be of a particular type,
which in turn means that this type information need not be stated explicitly. As such,
it is not necessary for a host language to be extended to treat “Operation” as a first

class type in order to support generic synchronisation policies.

o Generic synchronisation policies can be treated as being akin to classes (even to the

point of being able to inherit policies). Being able to model GSPs in an existing language
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construct helps minimise the number of extensions to a host language that are required

in order to support GSPs.

As a proof of concept that language support for GSPs is feasible, we have added generic
synchronisation policies to a host language. As we have shown in Section 10.1, the resulting
language, GasP, supports GSPs in a manner that is superior to any other language we are
aware of that tries to support GSPs.

Our prototype implementation of GAsP, discussed in Chapter 8, shows that generic syn-
chronisation policies can be implemented in a straight-forward manner. The use of GSPs
brings with it an execution speed overhead: two extra operation calls per synchronised invo-
cation. However, this is likely to be a small overhead relative to that of synchronisation. If
this overhead is felt to be unacceptable then it could be removed by providing, say, compiler
support that would in-line the code of a policy’s pre_sync and post_sync into the synchroni-
sation wrapper of a synchronised operation.

While the initial impetus to provide language support for GSPs was to promote code

reuse, we have shown that GSPs provide other notable benefits too:

o As discussed in Section 7.3.4, GSPs greatly simplify optimisation by transformation
since the compiler knows the name the policy being used rather than having to perform

extensive code analysis to deduce this information.

e Adopting a standard object-code interface for generic synchronisation policies permits
policies to be written in any synchronisation mechanism. Thus a language could con-
ceivably support several synchronisation mechanisms if it wished to, say, provide a
variety of trade-offs between expressive power and efficient implementation. Alterna-
tively, a language might not provide any means to write synchronisation policies, thus

simplifying the language.

e The instantiation of a generic synchronisation policy is extremely declarative—even if
a procedural synchronisation mechanism is used to implement the policy. Thus the use

of GSPs can improve the usability of synchronisation mechanisms.

This last point about the declarative nature of instantiating generic synchronisation policies
presents a potential irony, as we now discuss.

Papers on DRAGOON claim that, in practice, a relatively small number of behavioural
classes (i.e., generic synchronisation policies) will serve most of the synchronisation require-
ments of programmers [AGMBO91, pg. 14] [MCB*89] [Atk90, pg. 111]. (We do not have
enough experience with GAsP so far to be able to confirm or refute this claim, but its validity
seems likely.) Thus, if a library of generic synchronisation policies is shipped with a compiler
then most programmers using that compiler may never need to actually write synchroni-
sation code themselves. This suggests that GSPs are more important than the expressive
power of synchronisation mechanisms (since a standard library of synchronisation policies

need be written only once and users of the library will not be concerned about difficulties
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in implementing it). The irony of this is that language support for GSPs is feasible in large
part due to the benefits of the Sos paradigm, yet GSPs might make one of these benefits,

expressive power, almost redundant.

10.3 Limitations of our Research and Future Work

There are a number of issues regarding generic synchronisation policies that either we have
not addressed, or have touched on only briefly. This section briefly summarises these issues.

Firstly, although we have shown that it is possible to have inheritance hierarchies of
generic synchronisation policies, we have provided this ability in GAsP purely as a means of
code reuse. We have not considered subtyping issues for policies. Neither have we considered
subtyping issues for classes that instantiate policies.

Secondly, a subclass can either inherit the instantiation of a policy “asis” or re-instantiate
it anew. Qur prototype implementation does not provide any means for incremental re-
instantiation of a policy. Since this issue is of concern to inheritance, we will return to it in
Part IV.

A final limitation of our work on language support for GSPs is that we have not addressed
the issue of being able to instantiate several policies upon the operations of a class. One of the
major stumbling blocks in providing this capability is defining the semantics of combining
several policies. This is trivial if the policies to be combined consist of just guards, but
unless GSPs are to be restricted to guard-based synchronisation mechanisms, the semantics

of combining policies would need to be defined for other synchronisation mechanisms too.
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Part IV

Problems with Inheritance in

COOPLs
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Introduction to Part IV

Inheritance is a mechanism for code reuse that can be found in most object-oriented languages.
While inheritance has proved its worth in sequential languages, there are problems with its
use in concurrent languages (as we briefly discussed in Section 2.4).

To date, most researchers have thought that the root of the problems lies in a conflict
between synchronisation and inheritance. In Chapter 11 we show that the problems are
intrinsic to inheritance alone. We discuss two different categories of problems with inheritance
and show that the scope of these problems is much wider than previously thought. It is beyond
the scope of this thesis to do a detailed analysis of all aspects of the problems with inheritance
in COOPLs. Thus, Chapter 11 concentrates its analysis on a subset of the problems.

Chapter 12 contains a survey of how the problems with inheritance in COOPLs manifest
themselves in a variety of different inheritance mechanisms. From the results of this survey,
we identify the inheritance techniques that help reduce, though not eliminate, the hindrances
to reuse associated with the use of inheritance in COOPLs. We also argue that a different
reuse mechanism—genericity in the form of generic synchronisation policies—can reduce these
hindrances further still.

In the past, several other researchers have tried to analyse the problems associated with
the use of inheritance in COOPLs. Unfortunately, most of these researchers have misunder-
stood the nature of the problems. In Chapter 13, we examine this related work and conclude

Part IV of this thesis with a summary of the contributions we have made in this area.
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Chapter 11

Analysis of the Problems with
Inheritance in COOPLs

In this chapter we discuss two kinds of problem associated with the use of inheritance in
COOPLs that can hinder reuse of code.

Snyder [Sny86] has shown that inheritance can violate encapsulation in sequential, object-
oriented languages. Section 11.1 shows how similar violations of encapsulation occur in
COOPLs.

Another problem with inheritance in COOPLs is that it is employed to reuse two different
kinds of code: (i) sequential code, and (ii) synchronisation code. These two uses of inheritance
can conflict with each other in a way that hinders the reuse of code. We model this conflict as
violations of a particular kind of contract called the synchronisation policy contract (SPC).
The SPC is introduced in Section 11.2. Then in Section 11.3 we show how inheritance violates
it. This leads to a definition of what we term the Inheritance of Sequential code Versus the
Inheritance of Synchronisation code (ISVIS) conflict in Section 11.4.

A detailed analysis of hindrances to reuse caused by both violations to encapsulation and
the ISVIS conflict is beyond the scope of this thesis. Instead, we concentrate on analysing the
ISVIS conflict as it applies to the interaction between a common single inheritance mechanism
for sequential code and various inheritance mechanisms for synchronisation code. To help
with this analysis, we develop the ISVIS matriz in Section 11.5. (This matrix will then be
employed in the survey of the next chapter.)

Section 11.6 brings this chapter to a close by summarising its main finding.

11.1 Inheritance can Violate Encapsulation

A class exports an interface through which clients can invoke objects of that class. This
interface encapsulates (isolates) the implementation details of the class and thus protects
clients from possible, future changes to the implementation of the class.

Snyder [Sny86] argues that a subclass is a client of its parent classes and, as such, a

154



subclass should access its parent class only through an interface—though not necessarily the
same interface that is presented to external clients. Without such an interface, a subclass
might be written in such a way that is dependent upon the implementation details of a parent
class. In other words, inheritance violates encapsulation unless a language provides the ability
for a class to define an interface through which subclasses should access it.

Snyder speaks about sequential, object-oriented languages when arguing that inheritance
violates encapsulation. However, inheritance can violate encapsulation in COOPLs too. In
particular, inheritance can violate the encapsulation of the synchronisation code in a parent
class [Mat93] [Ber94]. To see why this is so, consider the following example.

A base class implements two operations, A and B, that examine some instance variables,
and a third operation, C, that updates these instance variables. The class also contains some

synchronisation code that implements the following policy:
ReadersWriter[ {A, B}, {C} ]

A subclass introduces a new operation, D, that updates some instance variables and changes

the synchronisation code to implement the following policy:
ReadersWriter[ {A, B}, {C, D} ]

Some time later, a programmer may introduce a new read-style operation, X, to the base

class. This necessitates that the synchronisation code of the base class be changed to:
ReadersWriter[ {A, B, X}, {C} ]

However, it also necessitates that the synchronisation code of the subclass be changed in order
to take into account the new operation. Thus we see that the subclass is not encapsulated
from changes to the synchronisation code of its parent class.

Partial encapsulation can be achieved by writing the synchronisation code of the subclass
as an incremental modification of the synchronisation code in the parent class. For example,

the synchronisation code in the subclass might be written as:
super.policy| super.ReadOps, super.WriteOps + {D} ]

If, as before, a new read-style operation, X, is introduced to the base class and the synchro-
nisation code of the base class changed to accommodate this new operation then this change
will be reflected in the synchronisation code of the subclass.

Similarly, if the generic policy instantiated in the parent class changes from Readers Writer
to, say, ReadersPriority then this change will also be reflected in the subclass due to its use
of “super.policy”. However, it should be noted that the only reason this works is because the
two policies, ReadersWriter and ReadersPriorily, take identically named formal parameters.
If the generic policy instantiated in the parent class changes from ReadersWriter to, say,
Alternation, then the synchronisation code in the subclass will no longer compile since the

formal parameters of Alternation are FirstOps and SecondOps rather than ReadOps and
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WriteOps, as in the ReadersWriter policy. Even if the parameters names were identical,
the two policies have very different semantics and thus the Alternation policy may not be
appropriate for use in the subclass.

It is clear that writing the synchronisation code of the subclass as an incremental modifica-
tion of inherited synchronisation code provides encapsulation against some kinds of changes
to the synchronisation code of the parent class. We feel the reason that it does not pro-
vide complete encapsulation is that there is no explicit interface between the parent class
and the subclass. Without such an interface, a subclass does not know what aspects of the
synchronisation code in its parent class are guaranteed not to change.

We feel it is important a class be able to specify a “synchronisation interface” that is
exported to subclasses (perhaps it might be useful to export a synchronisation interface to
external clients too). However, it is beyond the scope of this thesis to suggest what form such
a language construct might take. As such, we leave this topic for the moment and move on to
discuss another problem with the use of inheritance in COOPLS. This other problem, which
forms the focus for Part IV of this thesis, is one we call the ISVIS conflict, and we define it

in terms of violations of the synchronisation policy contract.

11.2 The Synchronisation Policy Contract (SPC)

For the purpose of this discussion, consider a class to be composed of two parts:

e Sequential code. This consists of both the declaration of instance variables/operations,

and also the code that implements the operations.

e Synchronisation code. This consists of code (in whatever syntax a synchronisation
mechanism is expressed) to implement the synchronisation policy imposed upon objects

of a class.

In some languages the sequential code and synchronisation code of a class are syntactically
separated. In other languages they are merged. As such, this notion of a class being composed
of two separate parts is just a conceptual view and does not always hold at a syntactic level.

A class that contains both sequential code and synchronisation code also (implicitly)

contains a synchronisation policy contract (SPC). There are three aspects to this contract:

o Asits name suggests, the synchronisation policy contract specifies what synchronisation

policy is to be used in a class.

e The SPC also specifies some responsibilities for both the synchronisation code and
sequential code of the class. The responsibility of the synchronisation code is to correctly

implement the specified synchronisation policy.

e The responsibility of the sequential code is that it must implement the operations of the
class in such a way as to ensure that, in the face of concurrent invocations constrained
by the synchronisation policy, the integrity of the instance variables will be maintained

and operations will return correct results.
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(Both the sequential code and synchronisation code may have extra responsibilities, in the
form of liveness constraints. However, a discussion of this is outside the scope of this thesis.)
As an example, consider a class that contains some instance variables, operations A, B

and C, some synchronisation code and the following SPC:!
ReadersWriter[ {A, B}, {C}]

The synchronisation code’s responsibility is to correctly implement this particular policy
and the sequential code must ensure that operations A and B do not modify any instance
variables. Operation C'is free to modify instance variables. In fact, it is ezpected that C' will
modify instance variables; if this were not so then surely the programmer of the class would
have chosen a different SPC.

The next section shows that inheritance may result in the SPC being violated and that

such violations can hinder code reuse.

11.3 Inheritance and the SPC

Inheritance is a means of facilitating reuse. However, it is also a means of introducing change
(a subclass that is identical to its parent class would not be of much use). In fact, it can be
useful to think of inheritance as a way to obtain code reuse in spite of change. We will show
in Sections 11.3.1 and 11.3.2 that if change introduced via inheritance violates the SPC of

the parent class then it may hinder the reuse of inherited code.

11.3.1 Changes to Inherited Sequential Code and Violations of the SPC

Consider a class that fits the following specification:

Sequential code: instance variables and operations A, B, C
SPC: ReadersWriter[ {A, B}, {C} ]

Synchronisation code: implements the policy specified in the SPC

Let us suppose that a derived class re-implements operation B and in doing so makes B a
write-style operation. The sequential code of the derived class cannot guarantee the integrity
of instance variables in the face of concurrent invocations constrained by the inherited syn-
chronisation policy. As such, the programmer must negotiate a new SPC for the derived

class. A suitable one would be:

ReadersWriter[ {A}, {B, C} ]

! As previously mentioned, there are three aspects to a synchronisation policy contract: (i) the policy to be
used in the class; (ii) responsibilities for the sequential code; and (iii) responsibilities for the synchronisation
code. For economy of space we denote a SPC by just the policy alone. The responsibilities of both the

sequential and the synchronisation code should be understood implicitly.
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Of course, the synchronisation code will have to be changed in order to make it comply with
(i.e., implement) this new SPC.

The important point of this example is that a change to the sequential code of a class
violated its inherited SPC; this lead to the negotiation of a new SPC which in turn necessitated
a change in the synchronisation code (to make it comply with the new SPC).

However, not all changes to the sequential code will necessitate changes in the synchro-
nisation code. For example, if, when operation B was re-implemented, it had remained
a read-style operation then the SPC would not have been violated and no changes to the
synchronisation code would have been required.

Another kind of change to the inherited sequential code of a class that can inhibit reuse of
inherited synchronisation code is the introduction of a new operation. For example, consider
what will happen if, instead of re-implementing operation B in the derived class, we introduce
a new write-style operation, D. In some guard-based mechanisms, invocations on D will be
unconstrained by default and thus instance variables will be at risk of corruption. The default
in some other mechanisms, e.g., Enabled-sets, is that invocations on D will never be serviced;
this violates liveness constraints. So, although the effects of adding a new operation varies
from one synchronisation mechanism to another, it is clear that doing so violates the SPC

and that a new SPC has to be negotiated, e.g.:
ReadersWriter[ {A, B}, {C, D} ]

As before, the synchronisation code would have to be changed in order to make it comply
with the new SPC.

11.3.2 Changes to Inherited Synchronisation Code and Violations of the
SPC

It is not only change to the sequential code of a class that might violate the SPC; change
to the synchronisation code might also violate the SPC too and inhibit reuse of inherited
sequential code.

For example, a programmer may decide to change the synchronisation code of a subclass
in order to permit more internal concurrency. Doing so means that the synchronisation part of
the class violates the inherited SPC (since it does not implement the inherited synchronisation
policy). As a result, the programmer may have to re-implement the sequential operations to
ensure the integrity of instance variables in the face of increased concurrency.

Just as not all changes to the sequential code of a subclass will violate the inherited
SPC, not all changes to the synchronisation code will violate the inherited SPC either. For
example, a synchronisation policy, Mutez, might be specified as providing mutual exclusion
but without any guarantee on the order that blocked processes will be woken up, other
than that the ordering will be fair, i.e., it will be impossible for a blocked process to be
skipped over indefinitely by other processes. A typical way to ensure fairness is to implement

a first-come, first-served scheduling policy, but a programmer might decide to modify the
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synchronisation code implementing Mutez in order to implement a different, fair scheduling
policy, e.g., random order scheduling. Such a change in the synchronisation code of a class

would not violate the SPC since the scheduling order was never guaranteed.

11.3.3 Not All Violations Necessitate Change

It should be noted that not all violations of the SPC by sequential code will necessitate change
in synchronisation code, and vice versa.
For instance, consider a class that contains a read-style operation, A, and a write-style

operation, B, the signatures of which are as follows:

A(Size: Int, ...)
B(Size: Int, ...)

The sequential code of this class is compatible with several synchronisation policies, including:

ReadersWriter[ {A}, {B}]
Mutex[ {A, B} |
SIN[ {A, B}, Size ]

Let us suppose that the SPC chosen for this class is:
ReadersWriter[ {A} {B} ]

and that the synchronisation code implements this policy. Consider a derived class that

changes the synchronisation code so that it implements one of the other listed policies, e.g.:
SIN[ {A, B}, Size ]

This obviously violates the SPC, yet it does not necessitate any changes in the sequential
code (since the sequential code is already compatible with the new policy).

Just as the sequential code of a class might be compatible with several synchronisation
policies, similarly it is possible for a class’s synchronisation code to comply with, i.e., imple-
ment, several synchronisation policies.

One example has already been given: code that implements a first-come, first-served
scheduler also implements a mutual exclusion policy. Also, if a mutual exclusion policy does
not guarantee fairness then a SJN policy will be compatible with it.

Another example can be found in the Eiffel|| language. Code implementing the first-come,
first-served policy is written in a manner that is independent of the names, and number, of
operations upon which it is being instantiated. Thus, the same code can implement, say,
“FCFS[ {A, B, C} |” for a base class and: “FCFS[{A, B, C, D} ]” in a derived class that
introduces a new operation, D. However, it should be noted that this applies to Eiffel||’s
implementation of first-come, first-served only; in general, instantiating a synchronisation
policy on an increased number of operations in Eiffel|| requires that the synchronisation code

be completely rewritten.
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11.4 Summary of the SPC and Definition of the ISVIS Con-
flict

A class that contains both sequential code and synchronisation code also (implicitly) contains
a synchronisation policy contract (SPC). The SPC specifies what synchronisation policy is to
be used in a class and some responsibilities for both the sequential code and the synchronisa-
tion code of the class. When change is introduced to the sequential code (or synchronisation
code) of a class, perhaps via inheritance, it is possible that the SPC will be violated. This
will necessitate a re-negotiation of the SPC and the synchronisation code (or sequential code)
may have to be changed in order to make it comply with the new SPC. Thus, when a class
contains both sequential code and synchronisation code, changes to one in a subclass may
necessitate change in (and hence hinder the reuse of)) the other. This is the Inheritance of
Synchronisation code Vs. the Inheritance of Sequential code (ISVIS) conflict.

It is instructive to draw an analogy between solving the ISVIS conflict and curing medical
conditions. Some medical conditions that afflict humans cannot be cured but can be controlled
to reduce their harmful effects. For example, poor eyesight is usually not curable (except
perhaps by expensive surgery) but can be controlled by the prescription of spectacles or
contact lens. Similarly, there is no cure for diabetes but it can be controlled via insulin.
The ISVIS conflict is similar in that our analysis suggests that it is ¢ntrinsic to languages
that contain both sequential code and synchronisation code and hence the conflict cannot be
“cured” (solved). However, this does not preclude the possibility of controlling the conflict
to reduce its harmful effects.

This distinction between solving the conflict and controlling its harmful effects is one
that is rarely made and numerous researchers claim to have solved the ISVIS conflict when
it would be more accurate for them to claim that they have developed techniques to control
its harmful effects [L6h93] [MY90] [GWI1] [Neu91] [BAWY92] [Tho94] [KL89] [BI92] [Mes93]
[BFS93] [LL94].

11.4.1 A Common Misunderstanding of the Problems with Inheritance in
COOPLs

Numerous researchers have referred to hindrances to reuse in COOPLs as a “conflict between
synchronisation and inheritance” (or words to similar effect) [TS89] [KL89] [Neu91] [Tho94]
[BBI*] [Mes93] [BFS93] [Mat93] [Ber94]. This phrasing suggests that it might be possible to
solve the conflict by developing new synchronisation mechanisms that do not interfere with
inheritance. Our analysis so far of the problems shows that this perception is incorrect and

that the problems are, in fact, intrinsic to inheritance:

e The ISVIS conflict is due to two different uses of inheritance conflicting with one an-
other.

¢ Inheritance can also violate encapsulation, thus hindering code reuse.
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The fact that the problems are intrinsic to inheritance itself rather than being a conflict
between synchronisation and inheritance has several ramifications.

Firstly, approaches to tackling the problems need to be focussed on, say, designing new
inheritance models or alternative ways to reuse code, rather than on designing new synchro-
nisation mechanisms.

Secondly, the problems may not be confined to the niche of synchronisation, but may
show up in other areas where inheritance is employed as a means to reuse several different
types of code in a single class. For example, similar problems have been noted in the area of
real-time constraints [ABvdSB94].

11.5 Analysing the ISVIS Conflict

A lot of past research into the ISVIS conflict has focussed on just one or two programming
exercises involving inheritance that display the conflict. Some researchers have designed
mechanisms for inheriting synchronisation code that implement these programming exercises
gracefully and thus concluded that their mechanisms tackle the conflict [KL89] [T'S89] [Cou94]
Such claims are invariably flawed. The only thing these researchers have shown is that their
mechanisms tackle one or two particular forms that the conflict might take. This does not
mean that their mechanisms cope equally well with the conflict in other forms.

Using just one or two programming exercises to test how an inheritance mechanism copes
with the ISVIS conflict is clearly not suflicient. One might employ a larger number of pro-
gramming exercises [Mat93] [BI92] [Mes93] [L6h93] [LL94] [Ber94] [Tho94] but still one would
not have any assurance that they embody all the forms that the conflict might take. A more
systematic approach is needed.

It seems obvious that the way to approach this is to (somehow) enumerate all the possible
circumstances in which the conflict might arise. Having done this, one could then devise a set
of programming exercises that test all of these different circumstances and use these exercises
to evaluate how different inheritance mechanisms tackle the conflict. In this way one can be
assured that a set of programming exercises is comprehensive enough to test for all the ways
that the conflict might manifest itself.

The key here is to enumerate all the possible circumstances in which the conflict might

arise. Towards this goal, we now introduce the ISVIS matriz.

11.5.1 The ISVIS Matrix

The ISVIS conflict arises due to a subclass changing either sequential code or synchronisation
code (or both). As such, we start by enumerating the different ways in which a subclass might
change code.

Having inherited from a base class, the following possible changes may take place to the

sequential code in the derived class:
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e It might not change at all.
o It might change in a way that does not violate the inherited SPC.

¢ It might change in a way that does violate the inherited SPC.

Similar changes may take place in the synchronisation code of a derived class.

This information could be combined to form a matrix like that shown in Figure 11.1. This
matrix enumerates the possible interactions between the changes that can occur in both the
sequential code and synchronisation code. However, a few useful modifications can be made
to it.

sync code

changes that do not changes that do

no change violate the SPC violate the SPC

seq code

no change

changes that do not
violate the SPC

changes that do
violate the SPC

Figure 11.1: Possible combinations of changes that can occur in a derived class

First of all, we can split up the third row (“changes that violate the SPC”) into two parts:

¢ Changes that violate the SPC but do not necessitate change of synchronisation code.

¢ Changes that violates the SPC and necessitate change of synchronisation code.

The first of these will be merged with the second row and that row renamed “changes that
do not necessitate change in synchronisation code.” The other will then form the third row
by itself. Similar changes can be made to the columns of the matrix.

The resulting matrix is shown in Figure 11.2.

The final step of refining the ISVIS matrix into a useful tool is dependent upon the
inheritance model used for sequential code. There are many variations of inheritance for

sequential code. For example:

e Some languages support a basic form of single inheritance in which a subclass can
inherit an operation “as is,” re-implement it anew or re-implement it but include a

“super” call to invoke the operation in the parent class.
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sync code
changes that do not changes that
no change necessitate change necessitate change
in seq code in seq code
seq code
no change
(1, 1) 1,2 1,3
changes that do not
necessitate change
[ d
yne e (2,1) (2.2) (2.3)
changes that
necessitate change
[ d
in sync code (3.1) 3.2) 3.3

Figure 11.2: The ISVIS Matrix

e Some languages, e.g., Fiffel [Mey92], permit a subclass to “undefine” an inherited op-

eration.

e Some languages support multiple inheritance. Actually, there are many different forms

of multiple inheritance since different languages have, say, different means of resolving

naming conflicts and different ways of handling repeated inheritance.

e The Beta language [KMMPNR87] provides an “inner” construct which is, in effect, the

opposite of “super.” Rather than have an operation in a subclass make a “super” call

to call up the inheritance hierarchy, an operation in a parent class makes an “inner”

call to call down the inheritance hierarchy.

e Bracha and Cook propose “mixin-based inheritance” [BC90] which, they claim, is a gen-

eralisation of Beta-style inheritance, single inheritance with “super” calls and multiple

inheritance.

e Some languages provide delegation as an alternative to inheritance (though there are

some claims that delegation is actually a form of inheritance [Ste87]). This is another

area that needs to be analysed for conflicts that might hinder code reuse [BY87].

It is beyond the scope of this thesis to analyse how the ISVIS conflict manifests itself in all

of these different forms of inheritance for sequential code. Instead, we confine ourselves to

analysing how the ISVIS conflict manifests itself in the first form of inheritance given in the

list, i.e., single inheritance in which a subclass might change the inherited sequential code as

follows:?

?Note that possible changes to instance variables in a subclass are of no concern to this discussion since

they will not be synchronised directly, but only via operations that access them.

163




(a) An operation may be re-implemented anew. We term this a “total re-implementation”

of the operation.

(b) An operation may be re-implemented, but the new code may include a “super” call to
the operation in the parent class. We refer to this as an “incremental modification” of

the operation.

(c) A new operation may be introduced.

The re-implementation of an operation—whether it takes the form of (a) or (b)—may or may
not necessitate a change in synchronisation code. For example, when inheriting from a class
that employs a Readers Writer policy, the re-implementation of a read-style operation will not
necessitate a change in synchronisation code if the re-implemented operation remains a read-
style operation; but will necessitate a change in synchronisation code if the re-implemented
operation becomes a write-style operation. As such, changes (a) and (b) belong in both the
second and third rows of the matrix. The introduction of a new operation always necessitates
change to the synchronisation code® so change (c) belongs only in the third row of the matrix.
The reason for this subdivision of the rows is that it is possible that the conflict might manifest
itself differently for each of the three kinds of change—(a), (b) and (c). The resulting matrix

is shown in Figure 11.3.

sync code
changes that do not changes that
no change necessitate change necessitate change
in seq code in seq code
seq code
no change
(G 12 1,3
changesthat donot  |(@
necessitae changg ————"-+-—-"————"———F+———————
in sync code (b) @ 1) 22 2.3
changes that 9) _______________________
necessitate change  [(b)
insynccode @ —— - ——— T T =&
(c) (3 1) (3.2 (3.3)

Figure 11.3: The ISVIS Matrix for single inheritance (and concurrency within objects)

We do not attempt to subdivide columns two and three of the matrix in the way that
we have subdivided rows two and three. This is because mechanisms for inheriting synchro-

nisation code are relatively new and less well understood than mechanisms for inheriting

 Actually, nearly always. As discussed in Section 11.3.3, one exception to this is the Eiffel|| implementation

of FCFS which does not need to be changed in order to accommodate new operations.
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sequential code. As such, it is difficult to know how the columns might be subdivided mean-

ingfully.

11.5.2 Using the ISVIS Matrix to Develop Sets of Programming Exercises

Now that the ISVIS matrix enumerates the different ways in which the ISVIS conflict might
occur for the single-inheritance (of sequential code) model we have chosen to analyse, one
could, in principle, devise a set of programming exercises that test each cell of the matrix.
This set of exercises could then be used to evaluate how the ISVIS conflict manifests itself
when this inheritance (of sequential code) mechanism is combined with various inheritance
(of synchronisation code) mechanisms.

Ideally, we would use just one synchronisation mechanism when performing this evalu-
ation. After all, we wish to evaluate different inheritance mechanisms rather than different
synchronisation mechanisms. However, when an inheritance (of synchronisation code) mech-
anism is developed, it is usually developed for a particular synchronisation mechanism. In
some cases, the inheritance mechanism and the synchronisation mechanism are coupled to-
gether tightly and are not easily separated. Thus, in order to evaluate a variety of inheritance
(of synchronisation code) mechanisms, we are forced to employ a variety of synchronisation
mechanisms. This raises a potential problem, as we now discuss.

Some synchronisation mechanisms generally keep synchronisation code separated from se-
quential code but resort to mixing the two together in order to implement a synchronisation
policy that is beyond the expressive power of the synchronisation mechanism. This mixing of
code can potentially hinder inheritance. As such, we must ensure that none of the program-
ming exercises used in the evaluation of an inheritance (of synchronisation code) mechanism
require expressive power beyond that available in the synchronisation mechanism. If we do
not ensure this then a programming exercise requiring more expressive power might induce
the ISVIS conflict and thus prejudice the evaluation of an inheritance mechanism. Thus, in
order to avoid this possibility, we must choose programming exercises that do not over-stretch
the expressive power of synchronisation mechanisms. This, unfortunately, precludes the pos-
sibility of having a single programming exercise per cell that could be used in the evaluation
of all inheritance (of synchronisation code) mechanisms. There are several reasons for this.

Firstly, for a set of programming exercises to be usable for the evaluation of all inheritance
(of synchronisation code) mechanisms would mean that the expressive power required to
implement any of the policies used in the exercises would have to be no greater than the
lowest common denominator of expressive power available in all synchronisation mechanisms.
This lowest common denominator of expressive power would be so poor as to make it quite
difficult to develop a complete set of programming exercises.

Also, many synchronisation mechanisms contain several constructs, e.g., EsP contains
guards and actions. It is possible that each of the constructs in a synchronisation mechanism
is inherited in a different way. Thus to evaluate how a particular inheritance mechanism

copes with the ISVIS conflict, it is necessary to evaluate it with each of the constructs in a
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synchronisation mechanism. A set of programming exercises based on a low level of expressive
power might not exercise all constructs.

Finally, one might hope that a universal set of programming exercises would contain
exactly one exercise per cell of the ISVIS matrix. While this might seem like a good starting
point, it is possible that an inheritance mechanism for synchronisation code might have only
partial support for a particular cell of the matrix, and that it would gracefully handle one
programming exercise within this cell while not fairing so well on a different exercise in that
same cell. (Examples of this will be seen in the next chapter.)

For the above reasons, we will develop several sets of exercises on an as-needed basis.
In this way, we can ensure that the evaluation of an inheritance (of synchronisation code)
mechanism is not prejudiced by it being associated with a synchronisation mechanism of poor

expressive power.

11.5.83 Two ISVIS Matrices

The ISVIS matrix shown previously (Figure 11.3) is suitable for languages that permit con-
currency within objects. However, some parts of this matrix do not apply to languages that
do not support concurrency within an object.*

For example, the third column of the matrix is for changes to synchronisation code that
necessitate changes in sequential code. The only kind of change that we can envisage applying
to this column is to change the synchronisation code in order to permit more (or less) internal
concurrency, e.g,. from a Mutezx policy to a ReadersWriter policy. Of course, one can only
have more internal concurrency in an object if the host language permits internal concurrency
in the first place. Thus it is clear that this column would not make sense in a language that
does not permit concurrency within objects.

Similarly, rows 3a and 3b only apply to languages that allow internal concurrency. This is
because the only way that an incremental or total re-implementation of an existing operation
will invalidate the SPC of a class is if the language permits internal concurrency and the re-
implementation changes an operation from being, say, a read-style operation into a write-style
operation.

Thus, rows 3a and 3b, and column 3 of the ISVIS matrix are disregarded when eval-
uating inheritance (of synchronisation code) mechanisms in languages that do not support

concurrency within objects. The resulting matrix is shown in Figure 11.4.

11.6 Summary

It is well known that there are problems associated with the use of inheritance in COOPLs.

A common perception is that the problems are rooted in a conflict between synchronisation

*Note that a language that does not support concurrency within an object is still considered to be a
concurrent language if it supports concurrency between objects. In this case, the synchronisation code inside

an object will be concerned solely with the scheduling of pending invocations.
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Figure 11.4: The ISVIS Matrix for single inheritance (and no concurrency within objects)

and inheritance. In this chapter we have shown that this perception is incorrect and that the
problems are, in fact, intrinsic to inheritance.

We have divided the problems into categories. One is that inheritance violates encapsula-
tion; the other, which we call the ISVIS conflict, is that trying to inherit two different types
of code can result in hindrances to code reuse. A detailed study of both categories of problem
is outside the scope of this thesis. Instead, we have confined ourselves to analysing the ISVIS
conflict in the combination of a common single-inheritance mechanism for sequential code
with inheritance mechanisms for synchronisation code. We have developed a tool, the ISVIS
matrix, that allows us to develop comprehensive sets of programming exercises to see how the
ISVIS conflict manifests itself in these inheritance mechanisms. The next chapter employs

the ISVIS matrix in a survey of different inheritance mechanisms for synchronisation code.
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Chapter 12

Reducing the ISVIS Conflict’s
Harmful Effects: A Survey and

Proposal

The previous chapter defined the ISVIS conflict and developed the ISVIS matrix. In this
chapter we employ the ISVIS matrix to survey the conflicts that arise when various inheritance
mechanisms used for synchronisation code interact with the inheritance of sequential code.

The results of the survey will support our analysis in the previous chapter that the problem
with the use of inheritance in COOPLs is intrinsic to inheritance rather than being due to
existing synchronisation mechanisms.

We conclude the chapter by showing how an alternative reuse mechanism, genericity (in
the form of generic synchronisation policies) can substantially reduce the harmful effects of
the ISVIS conflict.

Readers may find it useful to photocopy the ISVIS matrices (Figures 11.3 and 11.4)

introduced in the last chapter and keep these photocopies to hand when reading the survey.

12.1 Inheritance of Synchronisation Counters

Numerous guard-based mechanisms employ synchronisation counters. However, each mech-
anism usually has its own extensions/idiosyncrasies so we we start off by evaluating the
inheritance of a hypothetical, guard-based synchronisation mechanism that can access just
synchronisation counters. (Other guard-based mechanisms will be examined later.) We as-
sume that this mechanism supports the modification of guards by, say, an inherits keyword,
similar to that proposed for Guide [DDR*91, RR92].

Before we start the analysis, we should point out that there is a lot of confusion in the
literature over inheritance of guards in Guide. There are two reasons for this.

Firstly, an early Guide paper [DKM™*88] contained an ambiguously worded paragraph

which could be interpreted to mean that that if a subclass changes the guard of an operation
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then the sequential code of that operation must be re-implemented too. In fact, guards
and the sequential code of operations are kept separate and a re-implementation of one in a
subclass need not necessitate a re-implementation of the other. Thankfully, later papers on
Guide [DDR*91] [Riv92] [RR92] are clearer on this point.

A second source of confusion regarding Guide is its ability to incrementally modify guards.
By default, a subclass inherits all guards “as is.” However, a subclass can incrementally

modify guards by use of the inherits keyword. For example, a guard might be of the form:
Foo: inherits and .. .;

This states that the guard for operation Foo is similar to the guard in the parent class but
incrementally modified by and-ing on additional constraints. In effect, the inherits keyword
is akin to a “super” call in an operation. (Of course, instead of incrementally modifying a
guard, a subclass can re-implement it anew, if it so wishes.) The ability to incrementally
modify guards has not always been present in Guide, and it is only recent papers that discuss
it [DDR*91] [Riv92] [RR92]. As such, many researchers are apparently unaware that Guide
has this capability.

Because of these two sources of confusion, do not be surprised if the survey of inheritance
for guard-based mechanisms in this chapter shows them to be better than is indicated by
previous reviews of Guide in the literature [L6h93] [Mat93] [Ber94].

12.1.1 1st Column of the Matrix

We begin with programming exercises that test the cells in the first column of the ISVIS
matrix. Note that cell(1, 1) of the matrix does not involve any change at all. As such, we

ignore it and start off with a programming exercise to illustrate cell(2, 1).

1st Programming Exercise—cell(2a, 1)) and cell(2b, 1)

Write a synchronised class that contains operations A, B and C, and has synchronisation

code that implements the following SPC:
ReadersWriter[ {A, B}, {C} ]
Inherit from this class and do the following;:

o Totally re-implement A, keeping it as a read-style operation. (This tests cell(2a, 1)).

e Incrementally modify B, keeping it as a read-style operation. (This tests cell(2b, 1)).

The base and derived classes to implement this exercise are shown in Figure 12.1. In this
case we can see that, as expected, the modification of the sequential code did not hinder the

reuse of the inherited synchronisation code.
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class Base { class Derived inherits Base {
C...){...} B(...) { super.B(...); ... }

synchronisation // no change to C
A, B: ezec(C) = 0; synchronisation
C: exec(A, B, C) = 0; // no change to sync code

} }

Figure 12.1: 1st Programming exercise (synchronisation counters)

2nd Programming Exercise—cell(3c, 1)

Using the same base class as in the previous programming exercise, inherit and make the

following change to the derived class:
Introduce a new write-style operation, D.

Introducing this new operation violates the inherited SPC and so the following new one is

adopted:
ReadersWriter[ {A, B}, {C, D} ]

Of course, the synchronisation code will have to be modified to make it conform to this new
SPC. The code for this exercise is shown in Figure 12.2. Note that because of the similarity
between the synchronisation policies in the base and derived classes (both are instantiated
from the same generic policy), we are able to change from one to the other by means of

and-ing on new constraints to the inherited guards.

class Base { class Derived inherits Base {
AC.OH){...} B..){...} // no change to A, B, C

synchronisation synchronisation
A, B: ezec(C) = 0; A, B, C: inherits and ezec(D) = 0
C: exec(A, B, C) = 0; D: exec(A, B, C,D) =0

} }

Figure 12.2: 2nd Programming exercise (synchronisation counters)

However, it is worth noting that it would have been just as short (in terms of number
of keystrokes), if not slightly shorter, to implement the synchronisation policy in the derived
class anew rather than incrementally modify the inherited one. Furthermore, it is more
difficult to write and understand the guards in the derived class if they incrementally modify

inherited guards rather than are written anew, as shown below:

A, B: ezec(C, D) = 0;
C, D: ezec(A, B, C, D) = 0;
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This disadvantage of incrementally modifying inherited guards is not unique to this program-

ming exercise; it occurs in many of the other programming exercises too.

3rd Programming Exercise—cell(3a, 1) and cell(3b, 1)

Using the same base class as in the previous programming exercises, inherit and make the

following change to a derived class:
Totally re-implement B in a manner that makes it become a write-style operation.
Making this change violates the inherited SPC and so the following new one is adopted:
ReadersWriter[ {A}, {B, C} ]

Of course, the synchronisation code will have to be modified to make it conform to this new
SPC. The code for this exercise is shown in Figure 12.3. Once again, because of the similarity
between the synchronisation policies in the base and derived classes, we are able to change
from one to the other by means of and-ing on new constraints to the guards. Also, again,
it would have been slightly shorter and easier to write and understand the synchronisation

code if it were written anew (as shown below) rather than incrementally modified:

A: ezec(B, C) = 0;
B, C: ezec(A, B, C) = 0;

This is not to suggest that programmers should write synchronisation policies anew rather
than try to reuse existing code. On the contrary, we claim that this reuse mechanism is
inadequate and a better one needs to be developed. Further proof of this claim will come
through additional programming exercises, both for this synchronisation mechanism and also
for other guard-based mechanisms discussed later.

A final note: this programming exercise involved a total re-implementation of B and
hence tested cell(3a, 1); however, the reader should be easily able to verify that if B had

been incrementally modified (thus testing cell(3b, 1)) then the same results would have been

obtained.

class Base { class Derived inherits Base {
C...){...} synchronisation

synchronisation A: inherits and ezec(B) = 0
A, B: ezec(C) = 0; B: inherits and ezec(A, B) = 0
C: exec(A, B, C) = 0; }

}

Figure 12.3: 3rd Programming exercise (synchronisation counters)
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4th Programming Exercise—cell(3a, 1) and cell(3b, 1)

This exercise is similar to the previous one, except that instead of changing B from a read-style
operation to a write-style operation, we go the other way, i.e., change B from a write-style

operation to a read-style operation. In other words, the SPC of the base class is:
ReadersWriter[ {A}, {B, C} ]

In the derived class, operation B will be re-implemented and the SPC changed to be:
ReadersWriter[ {A, B}, {C} ]

As in the previous programming exercise, this tests cell(3a, 1) and can be easily adapted so
that it tests cell(3b, 1). The code for this exercise is shown in Figure 12.4. In this case,
there is a similarity between the synchronisation policies of the base and derived classes but
we want to remove constraints rather than add them in order to go from one policy to the
other. Since no way is provided to achieve this form of incremental modification, the guards

for operations A and B must be rewritten anew.

class Base { class Derived inherits Base {
C...){...} synchronisation

synchronisation A, B: ezec(C) = 0;
A: ezec(B, C) = 0; // guard for C can be reused
B, C: ezec(A, B, C) = 0; }

}

Figure 12.4: 4th Programming exercise (synchronisation counters)

The facilities for incrementally modifying guards have failed in this programming exercise.

They also prove inadequate in the next.

5th Programming Exercise—cell(3c, 1)

Write a synchronised bounded buffer class that contains operations Put and Get, and has
the following SPC:

BBuf] {Put}, {Get}, Size ]
Inherit and making the following change in the derived class:
Introduce a new operation, PutFront.!

Making this change violates the inherited SPC and so the following new one is adopted:

! As its name suggests, PutFront inserts an item at the front of the buffer (while Put inserts an item at
the rear of the buffer). If clients forgo the use of Put and instead access the buffer only via PutFront and Get

then the buffer is, in effect, used as a stack.
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BBuf] {Put, PutFront}, {Get}, Size ]

Of course, this necessitates a change in the synchronisation code so that it will comply with

this new SPC. The code for the base class is shown in Figure 12.5.

class Buffer[Size: Int] {

Put(...){ ...}
Get(...) { ...}

synchronisation
Put: ezec(Put, Get) = 0 and term(Put) — term(get) < Size;
Get: exec(Put, Get) = 0 and term(Put) — term(get) > 0;

Figure 12.5: 5th Programming exercise (synchronisation counters)

Notice that the calculation of the number of items currently in the buffer is given by the

expression:
term(Put) — term(Get)

When the derived class introduces a new operation, PutFront, this expression must be re-

placed with:
term(Put, PutFront) — term(Get)

This cannot be achieved by, say, and-ing a new constraint onto the inherited guards and so
we are unable to reuse any of the guards, but instead have to write them anew.

This example of adding PutFront to a buffer is frequently used in the literature. Another
common example from the literature which also tests cell(3c, 1) is for the subclass to add a
new operation, Get2, that removes the first two items from the buffer.? If the Get2 exercise
were used then the results would be the same: the subclass would have to write the guards

anew.

12.1.2 2nd Column of the Matrix

The programming exercises of the first column of the ISVIS matrix centered around the
sequential code of a class changing and how this affected synchronisation code. Now we move
onto the second column in which the synchronisation code is changed by having the derived
class instantiate a different generic policy. However, these changes are such that they should

not necessitate changes to the sequential code.

2 An operation such as Get2 might be defined if it was necessary to ensure that two items obtained from
the buffer were adjoining items. This could not be guaranteed by two calls to Get due to the possibility of

concurrent invocations of Get by other clients.
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6th Programming Exercise—cell(1, 2)

Write a synchronised base class that contains operations A, B and C, and the following SPC:
ReadersWriter[ {A, B}, {C} ]

Inherit from this class and in the derived class change the SPC to be:
ReadersPriority[ {A, B}, {C} ]

The code for this exercise is shown in Figure 12.6. As can be seen, due to the similarity
between the two generic synchronisation policies, it is possible to express the guards in the
derived class as a incremental modification of the guards in the base class. Also, in contrast to
a re-instantiation of the same generic policy, the reusing/modifying of the guard on operation

(' is relatively easy to write and understand.

class Base { class Derived inherits Base {
ACC.OH){...} B(...){...} // no change to seq code
C...){...} synchronisation

synchronisation C: inherits and wait(A, B) =0
A, B: ezec(C) = 0; }
C: exec(A, B, C) = 0;

}

Figure 12.6: 6th Programming exercise (synchronisation counters)

However, if the base class had employed the ReadersPriority policy and the derived class
the more basic Readers Writer policy then we would have had wanted to remove the extra
constraint in order to go from one policy to the other. Since there is no way to achieve this
form of modification, the guard for operation C' would have had to be rewritten anew.

The remaining programming exercises exhaustively test the other cells of the matrix.
However they do not reveal much more of interest. As such, readers may wish to skip
ahead to Section 12.1.4, where we summarise what the ISVIS matrix has told us about this

synchronisation mechanism.

7th Programming Exercise—cell(2, 2)

This exercise is similar to the previous one, except that the derived class makes some changes
to the sequential code as well as to the synchronisation code. The changes to the sequential
code do not violate the inherited SPC and hence should not necessitate changes to the
synchronisation code.

Write a synchronised base class that contains operations A, B and (', and the following

SPC:

ReadersWriter[ {A, B}, {C} ]
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Inherit from this class and in the derived class make the following changes:
e Change the synchronisation code so that it implements:
ReadersPriority[ {A, B} {C} ]

e Totally re-implement A, keeping it as a read-style operation. (This tests cell(2a, 2)).

o Incrementally modify B, keeping it as a read-style operation. (This tests cell(2b, 2)).

There is little point in showing the code for this exercise since it is similar to that of the
previous exercise (the code of which is shown in Figure 12.6), except that operations A and
B are modified as mentioned above. This modification of the sequential operations does not

hinder the inheritance of synchronisation code at all.

8th Programming Exercise—cell(3, 2)

As in the two previous examples, the derived class instantiates a generic policy different to
that used in the base class. This change in policy should not affect the sequential code.
However, the programmer makes some changes to the sequential code anyway—changes that
would have necessitated change in the synchronisation code even if a programmer had not
planned on changing the synchronisation code.

Write a synchronised base class that contains operations A, B and (', and the following

SPC:
ReadersWriter[ {A, B}, {C} ]
Inherit from this class and in the derived class make the following changes:

e Change the synchronisation code so that it implements a ReadersPriority policy.

e Totally re-implement C, and in doing so change it into a read-style operation. (This
tests cell(3a, 2)).

e Incrementally modify A4, and in doing so change it into a write-style operation. (This

tests cell(3b, 2)).

e Introduce a new write-style operation, D. (This tests cell(3c, 2)).

The code for this exercise is shown in Figure 12.7. As expected, the change from the basic
ReadersWriter policy to ReadersPriority does not have any effect on the sequential code
(although, as in the 6th programming exercise, it would have if the change in the policy had
gone the other way round). However, the changes made to the sequential code do affect the
synchronisation code and the end result is that the synchronisation code is written anew. If
the sequential had not changed in this manner then the change in the synchronisation code
might have been expressed as an incremental modification of the inherited synchronisation

code (as in the previous two exercises).
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class Base { class Derived inherits Base {
A { ...} A(...) {super.A(...); ... }

synchronisation synchronisation
A, B: ezec(C) = 0; B, C: exec(A, D) = 0;
C: exec(A, B, C) = 0; A, D: exec(A,B,C,D) =0
1 and wait(B, C) = 0;

}

Figure 12.7: 8th Programming exercise (synchronisation counters)

12.1.83 3rd Column of the Matrix

The remaining programming exercises test the third column of the ISVISmatrix, i.e., the de-
rived class will change the synchronisation code in such a manner that requires the sequential
code to be changed. The only type of change to synchronisation code that can have this effect
is a change that permits more internal concurrency. This is generally achieved by relaxing,
i.e., removing, some constraints on operations. Since the means to incrementally modify a
guard do not permit existing constraints to be removed, we can expect that most guards that

change will have to be rewritten anew.

9th Programming Exercise—cell(1, 3)

Write a synchronised base class that contains operations A, B and C, and the following SPC:
ReadersWriter[ {A}, {B, C} ]
Inherit from this class and change the synchronisation code so that it implements:

ReadersWriter[ {A, B}, {C} ]

This policy permits more internal concurrency. Of course, it necessitates a change to the
sequential code: operation B will have to be re-implemented in order to make it into a read-
style operation. The code for this exercise is shown in Figure 12.8. As expected, the two
guards affected by the change in the synchronisation policy, A and B, had to be rewritten
anew. The guard for operation ' was not affected and hence could be inherited and reused

without change.

10th Programming Exercise—cell(2, 3)

As in the previous exercise, write a synchronised base class that contains operations A, B

and C', and the following SPC:

ReadersWriter[ {A}, {B, C} ]
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class Base { class Derived inherits Base {
C...){...} synchronisation
synchronisation A, B: ezec(C) = 0;
A: ezec(B, C) = 0; // no change to guard for C
B, C: ezec(A, B, C) = 0; }

}

Figure 12.8: 9th Programming exercise (synchronisation counters)

Inherit from this class and change the synchronisation code so that it implements:
ReadersWriter[ {A, B}, {C} ]

As before, this necessitates that operation B be re-implemented in order to make it into a

read-style operation. Make the following additional changes to the sequential code:

o Totally re-implement A in a manner that keeps it as a read-style operation. (This tests

cell(2a, 3).)

o Incrementally modify C in a manner that keeps it as a write-style operation. (This
tests cell(2b, 3).)

The code for is exercise is similar to that of the previous exercise (shown in Figure 12.8). The
only difference is that the derived class re-implements operations A and C. These additional
changes to the sequential code do not affect the synchronisation code.

11th Programming Exercise—cell(3, 3)

As in the previous exercise, write a synchronised base class that contains operations A, B

and €', and the following SPC:
ReadersWriter[ {A}, {B, C} ]
Inherit from this class and make the following changes:

e Change the synchronisation code so that it treats B as a read-style operation. As in

the previous two exercises, this necessitates that operation B be re-implemented.

e Totally re-implement A, in a way that changes it into a write-style operation. (This
tests cell(3a, 3)).

e Introduce a new read-style operation, D. (This tests cell(3c, 3)).
The resulting SPC of the subclass is:
ReadersWriter[ {B, D}, {A, C} ]
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The code for this exercise is shown in Figure 12.9. As one might expect, since changes are
made to both the sequential code and the synchronisation code, there is not much reuse.
This exercise does not test cell(3b, 3). This can be remedied by changing the exercise so that

operation A is incrementally modified instead of being re-implemented anew.

class Base { class Derived inherits Base {

synchronisation D(..){...}
A: ezxec(B, C) = 0; synchronisation
B, C: ezec(A, B, C) = 0; B, D: ezec(A, C) = 0;
} A: exec(A, B, C, D) = 0;

C: inherits and ezec(D) = 0;

}

Figure 12.9: 11th Programming exercise (synchronisation counters)

12.1.4 Discussion

We now summarise what has been learned about the inheritance of guards that contain just
synchronisation counters.

Guards can be inherited “as is,” totally rewritten or incrementally modified by com-
bining them with new constraints via the and boolean operator.® While this incremental

modification of guards is a technique for reuse, it is not an ideal one, for several reasons:

o It is as verbose, if not slightly more so, than simply rewriting guards anew.

o It is also more difficult to write guards this way, and more difficult to understand them

later.

e Finally, it can only be used to add new constraints to guards. It cannot be used to

replace or remove existing constraints.

12.2 Inheritance of Scheduling Predicates

Incremental modification of inherited guards that contain scheduling predicates is similar to
the incremental modification of inherited guards that contain just synchronisation counters.
As such, we do not go through a complete set of programming exercises. Instead, in this
section we just discuss the important similarities and differences.

From the programming exercises used in Section 12.1, it is clear that one of the reasons

a programmer might want to modify a guard in a derived class is to re-instantiate the same

?Other boolean operators, e.g., or, could be used to incrementally modify guards. However, it is rarely

useful to do so.
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generic synchronisation policy in a different way—to take into account either a new operation
or an operation that has been re-implemented in such a way as to, say, change it from being
a read-style operation to being a write-style operation.

For example, consider a guard that contains the expression:
exec(list-of-operations) = 0

We saw in Section 12.1 that a subclass could achieve the effect of adding operation Foo to

list-of-operations in this guard by writing:
inherits and ezec(Foo) = 0

Guards that contain scheduling predicates can be modified in a similar manner. For example,

consider a guard that contains the predicate:
there_is_no(p in waiting(list-of-operations): condition)

A subclass could achieve the effect of adding operation Foo to list-of-operations in this guard

by writing;:
inherits and there_is_no(p in waiting(Foo): condition)

The code in Figures 12.10 and 12.11 shows a concrete example of this.

class Base {
Bar(len: Int, ...) { ... }
synchronisation

Bar: ezec(Bar) = 0 and there_is_no(p in waiting(Bar): p.len < this_inv.len);

}

Figure 12.10: SIN[ { Bar[len]} ]

class Derived inherits Base {

Foo(len: Int, ...) { ... }
synchronisation

Foo, Bar: inherits Bar and ezec(Foo) = 0

and there_is_no(p in waiting(Foo): p.len < this_inv.len);

Figure 12.11: SIN[ {Fool[len], Bar[len]} ]

The base class implements the policy:
SIN[ {Bar[len]} ]

The derived class introduces a new operation, Foo, and modifies the synchronisation code so

that it implements:
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SIN[ {Foollen], Bar[len]} ]

Just as we may want to modify a guard in order to re-instantiate the same generic policy
in a different way, so too we might want to modify a guard in a derived class in order to
instantiate a different, but related, generic synchronisation policy. An example of this was
given in the 6th programming exercise of Section 12.1.2 when a derived class replaced the
inherited ReadersWriter policy with ReadersPriority. While that particular example used
just synchronisation counters, the same can be done with guards that contain scheduling
predicates too.

For example, consider a base class that uses the following guard to implement a SJN

policy upon operation Foo:
Foo: ezec(Foo) = 0 and there_is_no(p in waiting(Foo): p.len < this_inv.len);

If a subclass wished to implement a SJN policy with FCFS sub-ordering then it could do so

by re-implementing the guard anew, as follows:

Foo: ezec(Foo) = 0 and there_is_no(p in waiting(Foo): p.len < this_inv.len

or p.len = this_inv.len and p.arr_time < this_inv.arr_time);

Alternatively, it could inherit the guard of the base class and incrementally modify it as

follows:

Foo: inherits and there_is_no(p in waiting(F¥oo): p.len = this_inv.len

and p.arr_time < this_inv.arr_time);

12.2.1 Discussion

These examples show that the disadvantages that apply to the inheritance of guards contain-
ing synchronisation counters also apply to the inheritance of guards containing scheduling

predicates, i.e.:

o Incremental modification of an inherited guard is likely to be as verbose (if not more
so) than simply rewriting the guard anew. In fact, since the syntax of scheduling
predicates is more verbose than that of synchronisation counters, this problem becomes

more pronounced with scheduling predicates.

e It is also more difficult to write/understand guards that have been incrementally mod-

ified than guards that are written anew.

e PFinally, this mechanism cannot always be employed. For example, while guards can
often be incrementally modified to add a new operation to the instantiation of a generic

synchronisation policy, the same can not be done in order to remove an operation.

180



12.3 Inheritance of Actions in Esp/Desp

A major enhancement in going from SP to Esp is that guards are complemented with the
concept of actions. This then raises the question of how actions can be inherited and reused.
In this section we discuss the support that Esp—actually DEsp—provides for reuse of syn-
chronisation code.

Note that the mechanism used to inherit synchronisation code in DESP is essentially the
same as the inheritance mechanism used in the surveys so far. All that has changed is the
syntax. For example, instead of the using the inherits keyword to obtain incremental change

of a guard, DEsP employs a “super” call to the same effect.

12.3.1 Inheritance of Actions

The following example shows that the inheritance of actions suffers from problems similar to
those that beset the inheritance of guards.
The base class shown in Figure 12.12 and its support class in Figure 12.13 implement a

starvation-free version of the SJN scheduler, i.e.:
SJN-Fair[ { Foo[length]} ]

Freedom from starvation is guaranteed by the start(Foo) action (method s_Foo). This action
iterates over all the pending Foo requests and decrements the length of any that has been
skipped over. Now consider a subclass that introduces a new operation, Bar, and modifies

the synchronisation code to incorporate it, thus giving:
SJN-Fair[ {Foo[length], Bar[length]} |

Code for this derived class is shown in Figure 12.14. The guard (method g_Foo) is incremen-
tally modified in a manner similar to that of the previously discussed guard-based mecha-
nisms, with the only difference being that of syntax: instead of using an inherits keyword,
DEsp invokes the guard of the parent class with the syntax for invoking a method in a parent
class.

The start action (method s_Foo) in the derived class must iterate over not only pending
Foo invocations but also pending Bar invocations. It achieves this by incremental modifi-
cation: s_Foo invokes its namesake in the parent class in order to iterate over pending Foo
invocations, and then uses a separate loop to iterate over pending Bar invocations.

The reader may be dismayed at the thought of having to use two loops instead of somehow
being able to generalise the original loop so that it iterates over pending invocations for Bar
as well as Foo. After all, this form of loop repetition increases the possibility of programming
errors and the difficulty of code maintenance.

However, it should be noted that the way of incrementally modifying guards that contain

synchronisation counters and/or scheduling predicates is quite similar to this loop repetition.
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class Base inherits Any

public method Foo(length: Int)
begin ... end

synchronisation

method s_Foo(t: Lengthlnv)
var p: Lengthlnv
begin
for p in waiting(¥oo) do
if p.arr_time < t.arr_time then p.assign_length(p.length — 1); fi;
od

end

method g_Foo(t: LengthInv): Bool
var p: Lengthlnv
begin
result := (ezec(Foo) = 0)
and (there_is_no(p in waiting(¥oo): (p.length < t.length)
or ((p.length = t.length) and (p.arr_time < t.arr_time))));
end

map start(Foo) — s_Foo

map guard(Foo) — g_Foo

Figure 12.12: Starvation-free, Shortest Job Next scheduler (base class)

class Lengthlnv inherits Invocation
public var length: Int
public method assign_length(val: Int)

begin
length := val;

end

Figure 12.13: LengthInv class, used in the starvation-free SJN scheduler

As such, the incremental modification of guards that was discussed in Sections 12.1 and 12.2

should be looked upon with equal disfavour.

So as not to give a distorted appraisal of Esp, it should be noted that, in practice, not
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class Derived inherits Base

public method Bar(length: Int)
begin ... end

synchronisation

method s_Foo(t: Lengthlnv)
var p: Lengthlnv
begin
super.s_Foo(t);
for p in waiting(Bar) do
if p.arr_time < t.arr_time then p.assign_length(p.length — 1); fi;
od

end

method g_Foo(t: LengthInv): Bool
var p: Lengthlnv
begin
result := super.g_Foo(t) and (ezec(Bar) = 0)
and (there_is_no(p in waiting(Bar): (p.length < t.length)
or ((p.length = t.length) and (p.arr_time < t.arr_time))));
end
map start(Bar) — s_Foo

map guard(Bar) — g_Foo

Figure 12.14: Starvation-free, Shortest Job Next scheduler (derived class)

all actions loop over pending invocations. For example, the Esp implementation of the Disk
Head Scheduler (Figure 4.11) contains one guard, two actions and two other support routines.
If this code were written as a DESP class and a derived class introduced a new operation, only
a minimum of change would need to be made to the synchronisation code. To be specific,
the guard would have to be re-implemented and the map construct used to ensure that the
guard and existing actions are associated with the new operation. None of the code in the

actions or the support routines would have to be changed in any way.

12.3.2 Wrapper Functions

Since the synchronisation mechanism of DESP has access to the full power of the data struc-
tures and flow-control constructs of the host language, one might consider that some of the

other features of DESP might help with inheritance.
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As an example, consider the following guards used to implement a bounded buffer:

Put: ezec(Put, Get) = 0 and term(Put) — term(get) < Size;
Get: exec(Put, Get) = 0 and term(Put) — term(get) > 0;

One could write two “wrapper functions”—mutexr and num—as follows:

method mutex: Bool begin result := ezec(Put, Get) = 0; end

method num: Int begin result := term(Put) — term(Get); end
Then the guards for the buffer could be rewritten as:

Put: mutex and num < Size;

Get: mutex and num > 0;

This not only helps make the guards easier to understand but also (apparently) helps some-
what with the inheritance of guards in derived classes. For example, consider a subclass
that introduces a new operation, PutFront. Although the implementation of the wrapper
functions will need to be changed to take into account this new operation, the concepts they
embody still remain valid and so the guards which use them will not have to be changed.
Functions might be used as wrappers not only around synchronisation counters but also
around collections of invocations. For example, Figure 12.15 shows an implementation of the
starvation-free version of the SJIN scheduler. The difference between this version and that
shown previously in Figure 12.12 is that this version uses two wrapper functions—one for
ezec(Foo) and another for waiting(Foo). These wrapper functions are then used in the action
and guard. Figure 12.16 shows a derived class which introduces a new operation, Bar. The
only changes required to the synchronisation code required are (i) to map the existing guard
and action onto the new operation, and (ii) to re-implement the wrapper functions.
However, the use of wrapper functions does not usually result in a decrease of the number
of lines that a programmer must write. This is because the amount of code required for the
wrapper functions often equals or even exceeds the amount of code in guards and actions.
For example, consider the following guards which implement the readers priority variant

of the readers/writer policy:

Read: exec(Write) = 0;
Write: ezec(Read, Write) = 0 and wait(Read) = 0;

To implement this with the aid of wrapper functions in an attempt to aid reuse would require
three functions: one for each of exec(Read), exec(Write) and wait(Read).

The problem with using wrapper functions is that the abstraction they provide is at
too low a level. Rather than abstracting at the level of, say, exec(list-of-operations) and
waiting(list-of-operations), programmers should be able to abstract at the higher level of
list-of-operations itself and then be able to apply wait, exec and waiting and so on to this
abstraction. This is, of course, the level of abstraction that generic synchronisation policies
provide. Later in this chapter we will examine how the use of generic synchronisation helps
to reduce the harmful effects of the ISVIS conflict.
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class Base inherits Any

public method Foo(length: Int) begin ... end

synchronisation
method waiting_Foo: Collection[LengthInv] begin result := waiting(Foo); end
method exec_Foo: Int begin result := ezec(Foo); end

method s_Foo(t: Lengthlnv)
var p: Lengthlnv
begin
for p in waiting_Foo do
if p.arr_time < t.arr_time then p.assign_length(p.length — 1); fi;
od

end

method g_Foo(t: LengthInv): Bool
var p: Lengthlnv
begin
result := (exec_Foo = 0) and (there_is_no(p in waiting_Foo: (p.length < t.length)
or ((p.length = t.length) and (p.arr_time < t.arr_time))));
end
map start(Foo) — s_Foo

map guard(Foo) — g_Foo

Figure 12.15: Starvation-free, SIN scheduler with wrapper functions (base class)

class Derived inherits Base
public method Bar(length: Int) begin ... end
synchronisation

method waiting_Foo: Collection[LengthInv] begin result := waiting(Foo Bar); end

method exec_Foo: Int begin result := ezec(Foo Bar); end

map start(Bar) — s_Foo

map guard(Bar) — g_Foo

Figure 12.16: Starvation-free, SIN scheduler with wrapper functions (derived class)
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12.4 Inheritance of Synchronisation Code in Guide

In this section, we do not consider any of the proposed extensions presented at workshops
[RR92, Riv92], but instead confine the discussion to a more stable version of Guide [DDR*91].

This version of Guide allows the following constructs to appear in guards:

e Synchronisation counters

e Parameters. However, recall that parameters of different invocations cannot be com-
pared with each other; rather, parameters can be compared only with, say, instance

variables or constants.

e Instance variables.

Section 12.1 has already discussed the inheritance issues concerning synchronisation counters;
and the limited access to parameters is not interesting so this section just discusses the
inheritance issues that arise when guards have access to instance variables.

As explained in Chapter 3, instance variables that are accessed in guards are really syn-
chronisation variables that just happen to be implemented as instance variables (due to lack
of language support for synchronisation variables). Thus, we can expect that if a derived
class changes its inherited synchronisation policy in a manner that requires the maintenance
of a synchronisation variable then this will be achieved by implementing it as an instance
variable and modifying the inherited sequential code in order to maintain this variable.

An (admittedly contrived) example to illustrate this is provided by the following program-
ming exercise: inherit from a bounded buffer class and introduce a new operation, Gget, that
cannot execute immediately after an invocation of Put. Implementations of the base and
derived classes are shown in Figures 12.17 and 12.18, respectively. Note that the inherited

operations have to be incrementally modified in order to maintain the variable after_put.

class Buffer[elem, Size] {
int  num;
... //other instance variables
Buffer(...) { ... } // initialisation

Put(...){ ...}
Get(...) { ...}

synchronisation
Put: ezec(Put, Get) = 0 and num < Size;
Get: exec(Put, Get) = 0 and num > 0;

Figure 12.17: A bounded buffer
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class ExtBuffer[elem, Size] inherits Buffer {
Bool after_put;
ExtBuffer(...) { super.Buffer(...); after_put := false; }
Put(...) { super.Put(...); after_put := true; }
Get(...) { super.Put(...); after_put := false; }
Gget(...) { ...; after_put := false; }
synchronisation
Put, Get: inherits and ezec(Gget) = 0;
Gget: inherits Get and ezec(Gget) = 0 and not after_put;

Figure 12.18: A bounded buffer with operation Gget

12.5 Summary of Inheritance in Guard-based Mechanisms

So far we have examined how well various guard-based synchronisation mechanisms promote
reuse of inherited synchronisation code through incremental modification. The results are
not encouraging. It is often (i) shorter, and (ii) easier to rewrite guards anew than it is to
incrementally modify them. Furthermore, (iii) this method of reuse cannot always be used,
e.g., it can be used to add new constraints onto guards but cannot be used to remove or

replace existing constraints.

If there is any good news it is that, with one exception, these guard-based mechanisms
keep synchronisation code separate from sequential code, and thus poor support for reuse
of inherited synchronisation code does not hinder the reuse of inherited sequential code.
The exception is Guide which implements synchronisation variables as (sequential) instance
variables. Even here, the interference is not too severe: if the synchronisation code of a derived
class wishes to declare/maintain a new synchronisation variable then the required changes to
the sequential code can likely be made via incremental modification to the operations rather

than re-implementing them anew.

In the surveys carried out so far, the synchronisation mechanisms have had different
amounts of expressive power but all have used the same inheritance mechanism. This was
why the results of the surveys have been so similar. The next section examines a different
inheritance mechanism, and shows that its effectiveness in tackling the inheritance anomaly

is quite different.
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12.6 Inheritance of Enabled-sets in Rosette

Since the Rosette language does not support internal concurrency,* we use the ISVIS matrix
shown in Figure 11.3 to evaluate it. This lack of internal concurrency means that we cannot
use programming exercises based on readers/writer in order to evaluate the inheritance mech-
anism of Enabled-sets. Instead, many of the examples will be based on a bounded buffer.
Recall from Section 11.5.2 that this varying of programming exercises for different synchroni-
sation mechanisms is necessary to ensure that the evaluation of an inheritance mechanism is

not negatively biased due to limited expressive power of a host synchronisation mechanism.

12.6.1 1st Column of the Matrix

We start off with some programming exercises that test the first column of the ISVIS matrix.

class Base {
... // instance variables
state empty enables {Put};
state full enables {Get};
state partial enables empty.ops + full.ops;
Base(...)
{ ... // sequential initialisation
become empty; // buffer is empty initially
}
Put(...)
{ “sequential code to place item at end of buffer”;
if “buffer is full” then become full; else become partial; endif;
}
Get(...)
{ “sequential code to remove item from front of buffer”;

if “buffer is empty” then become empty; else become partial; endif;

Figure 12.19: 1st programming exercise (Rosette)—base class

*The statement that Rosette does not support internal concurrency is slightly misleading. In Rosette when
an operation is permitted to start execution, it has exclusive access to the object, i.e., it executes in mutual
exclusion. However, when it executes a become statement then a copy of the object is made. The currently
executing operation will work on its own copy of the object and the other copy will be used by the next
invocation that executes. Thus any updates to instance variables after executing a become statement will
not be reflected in the object that is accessed by future invocations. For this reason, the become statement
usually appears at, or near, the very end of an operation. Thus, in effect, there is little chance for internal

concurrency.
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1st Programming Exercise—cell(2a, 1)

Write a synchronised bounded buffer class that contains operations Put and Get. Inherit

from this class and do the following:
Totally re-implement operation Put.

The code of the base and derived classes are shown in Figure 12.19 and 12.20.

class Derived inherits Base {
Put(...)
{ “new sequential code to place item at end of buffer”;

if “buffer is full” then become full; else become partial; endif;

Figure 12.20: 1st programming exercise (Rosette)—derived class

Note that since the synchronisation code to determine what set of operations should be
“enabled” next is placed inside the bodies of operations, changing the sequential code of an
operations necessitates a retyping of any such synchronisation code inside that operation, even
though it may not have changed. (This can be seen in the re-implementation of operation Put
in the derived class.) This is a very clear example of the modification of inherited sequential

code hindering the reuse of inherited synchronisation code.

2nd Programming Exercise—cell(2b, 1)

Utilising the base class from the previous exercise, inherit and do the following in the derived

class:
Incrementally modify operation Put.

Let us consider two possible cases. The first is when the operation in the subclass is written

in the form:

Put(...) {

“new sequential code”

super.Put(...);
}

The second case is when the new sequential code is placed after the “super” call. The first
case works fine, while the second one does not since the new sequential code will be executed
after the synchronisation code in the “super” call and, as said at the start of Section 12.6,
synchronisation code should appear at the end of an operation. Thus, in the second case
the operation will have to be re-implemented anew. Hence we see that the inheritance of
synchronisation code, without the code even being modified, can hinder the reuse of inherited

sequential code.
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3rd Programming Exercise—cell(3c, 1)

As before, write a synchronised bounded buffer with operations Put and Get, and the fol-

lowing SPC:
BBuf] {Put}, {Get}, Size ]

Inherit from this class and do the following;:
Introduce a new put-style operation, PutFront.

Obviously this will require that the synchronisation code be changed so that it implements:
BBuf] {Put, PutFront}, {Get}, Size |

The base class has already been shown (Figure 12.19); the derived class is shown in Fig-
ure 12.21. The empty enabled-set is incrementally modified to include the new operation. In

doing this, the rest of the inherited synchronised code takes account of this new operation.

class Derived inherits Base {
state empty enables super.empty.ops + {PutFront};
PutFront(...)
{ “sequential code to place item at front of buffer”;

if “buffer is full” then become full; else become partial; endif;

Figure 12.21: 3rd programming exercise (Rosette)—derived class

While the incremental modification of the emply enabled-set is laudable, one complaint
we have concerns the new operation PutFront. The synchronisation code at the end of this
operation is the same as that at the end of the Put operation. Such repetition of code is error
prone; it would be better if this identical synchronisation code could be written once and
then shared by all put-style operations. We discuss this possibility further in Section 12.6.3.
4th Programming Exercise—cell(3c, 1)

As before, write a synchronised bounded buffer with operations Put and Get, and the fol-

lowing SPC:
BBuf] {Put}, {Get}, Size ]
Inherit from this class and do the following;:
Introduce a new operation, Get2, that removes two items from the buffer.

Obviously this will require that the synchronisation code be changed so that it implements,

say:
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Another-BBuf[ {Put}, {Get}, {Get2}, Size ]

The difference between this programming exercise and the previous one is that, here, the
introduction of a new operation causes the derived class to instantiate a different generic
synchronisation policy, while in the previous exercise the derived class re-instantiated the
same generic synchronisation policy.

The base class (shown previously in Figure 12.19) defined three enabled-sets: empty, full
and partial. Get2 does not fit neatly into these existing sets. In particular, the concept of
a partially full buffer will need to be subdivided into: (i) a buffer containing one item, and
(ii) a buffer containing two or more items. The Get2 operation cannot execute in the former
state but can in the latter.

Obviously the synchronisation code at the end of the existing operations— Pul and Gel—
will have to be changed in order to take into account these new states. In order to make
such changes we have to rewrite these operations anew. Thus we see that introducing a new
operation that requires a different generic synchronisation policy to be instantiated might

make it impossible to reuse any of the inherited sequential operations.

12.6.2 2nd Column of the Matrix

We now use some programming exercises to test the second column of the ISVIS matrix.

5th Programming Exercise—cell(1, 2)

Write a class that contains two operations, A and B, and the following SPC:
Priority[ {A}, {B}]

Inherit from this class and change the synchronisation code so that the priority of the two

operations are swapped, i.e., the new SPC is:
Priority[ {B}, {A}]

The code for this exercise is shown in Figure 12.22. Note that this code uses a small extension
of the Enabled-sets mechanism as previously discussed. The keyword enables-by [TS89,
pg. 110] takes a list of sets of operations and enables operations in the order that these sets
are specified. Thus in this example operation A has priority over B. The only change the
subclass needs to make is to redefine the priority enable set in order to swap the priorities of

the operations.

6th Programming Exercise—cell(1, 2)

As in the previous exercise, write a class that contains two operations, A and B, and the

following SPC:
Priority[ {A}, {B}]
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class Base { class Derived inherits Base {
state priority enables-by {A}, {B}; state priority enables-by {B}, {A};
Base(...) }
{ ... // sequential initialisation

become priority;

}
{ “sequential code”;

become priority;

}
{ “sequential code”;

become priority;

Figure 12.22: 5th programming exercise (Rosette)

Inherit from this class and change the synchronisation code so that these two operations

execute in strict alternation, i.e., the new SPC is:
Alternation] {A}, {B}]

This exercise is similar to the previous one in that the synchronisation code changes in a
manner that should not affect the sequential code. However, there is an important difference:
the previous exercise re-instantiated the same generic synchronisation policy while in this
exercise the subclass instantiates a different policy. The net effect is similar to that in the
fourth programming exercise: the inherited operations have to be re-implemented anew in
order to change the synchronisation code contained in them. This can be easily seen in in
Figure 12.23.

7th Programming Exercise—cell(2, 2)

The first and second programming exercises show that changes to sequential code hinders
reuse of synchronisation code. Similarly, the sixth programming exercise show that changes
to synchronisation code can hinder reuse of sequential code. When both types of changes are
combined together, as in this cell, there is unlikely to be any possibility for reuse of inherited

code. Interested readers can devise a programming exercise to verify this for themselves.

8th Programming Exercise—cell(3c, 2)
Write a class that contains two operations, A and B, and the following SPC:

Priority[ {A}, {B}]
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class Base {

state priority enables-by {A}, {B};
Base(...)

{ ... // sequential initialisation

become priority;

}
{ “sequential code”;

become priority;

}
{ “sequential code”;

become priority;

class Derived inherits Base {
state first enables {A};
state second enables {B};
Derived(. .. )
{ ... // sequential initialisation

become first;

}
{ “sequential code”;

become second;

}
B(...)

{ “sequential code”;

} become first;

}

Figure 12.23: 6th programming exercise (Rosette)

Inherit from this class and introduce a new operation, C', that has a priority similar to that
of A. Also change the synchronisation code so that the priority of the two sets of operations

are swapped, i.e., the new SPC is:
Priority[ {B}, {A, C}]

The code for this exercise is shown in 12.24. This cell is quite similar to cell(3c, 1) in that
the synchronisation code can be easily changed to accommodate a new operation if doing so
involves re-instantiating the same generic policy. However, if the change in synchronisation
code had involved instantiating a different policy, e.g., Alternation, then it would not have

been possible to reuse inherited code.

12.6.3 Discussion

As discussed in Section 10.1.5, Enabled-sets are a form of generic synchronisation policies.
Of particular relevance to the present discussion is that a subclass adding new operations to
an inherited enabled-set is the means by which a subclass re-instantiates the same generic
synchronisation policy as used in its parent class. Examples of this can be seen in the 3rd,
5th and 8th programming exercises on pages 190, 191 and 192, respectively. Enabled sets
handles this re-instantiation of a policy gracefully. However, if a subclass wishes to instantiate
a generic synchronisation policy that is different to that in its parent class then this requires
that that all the operations be redefined. Examples of this can be seen in the 4th and 6th

programming exercises on pages 190 and 191, respectively.
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class Base {
state priority enables-by {A}, {B};
Base(...)
{ ... // sequential initialisation

become priority;

class Derived inherits Base {
state priority enables-by {B}, {A, C};
{ “sequential code”;

become priority;

} }
AC.) }

{ “sequential code”;

become priority;

}
{ “sequential code”;

become priority;

Figure 12.24: 8th programming exercise (Rosette)

The cause of this hindrance to reuse is the lack of separation between synchronisation
code and sequential code. This lack of separation also hinders reuse when a subclass wishes
to change the sequential code of an operation, as in the 1st and 2nd programming exercises
on pages 189 and 189, respectively.

One way to considerably lessen the hindrances to reuse would be to syntactically separate
sequential code and synchronisation code from one another. For example, if the restriction
is made that synchronisation code can only appear at the end of an operation (which, in
practice, is the case anyway) then a term action could be introduced and the synchronisation

code placed there, thus leading to a syntactic separation of code such as:

Put(...) { “sequential code”; }

term(Put) — { “synchronisation code”; }

Such a separation would enable the sequential code to be inherited and modified without the
need to retype the synchronisation code, and vice versa.

However, this can be improved further. The synchronisation code at the end of all put-
style operations will be identical; also, the synchronisation code at the end of get-style opera-
tions is quite similar, though not identical, to that at the end of put-style operations. It seems
feasible that the synchronisation code at the end of all these operations could be generalised
and factored out into a single term action. Figure 12.25 illustrates this by example. The
run-time system will automatically invoke the term action (represented here as an operation)
at the end of any operation such as Put or Get, and it will determine which set of operations
will be “enabled” next.

The code of this class is approximately the same length as that of the original base
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class Base {

... // instance variables

Put(...) { “sequential code to place item at end of buffer”; }

Get(...) { “sequential code to place item at end of buffer”; }
private:

state empty enables {Put};

state full enables {Get};

state partial enables empty.ops + full.ops;

term()

{ if “buffer is full” then become full;

else if “buffer is empty” then become empty;

else become partial;

endif;

Figure 12.25: Bounded buffer with modified version of Rosette—base class

class (Figure 12.19). However, the benefits of separating the synchronisation code from the
sequential code can be seen in derived classes. If a derived class wishes to, say, totally re-
implement operation Put then it can do so without having to retype any synchronisation code
(1st programming exercise). Similarly for a derived class that wishes to incrementally modify
Put (2nd programming exercise), or introduce a new put-style operation (3rd programming
exercise). If a derived class wishes to instantiate a generic synchronisation policy different
to that of its parent class (e.g., as in the 4th programming exercise) then it can change the
synchronisation code without affecting the inherited sequential code.

Note that this separation of synchronisation code from sequential code does not affect
the synchronisation mechanism per se. Rather it can be considered to be a change in the

inheritance mechanism since the only affect it has is to facilitate inheritance of code.

12.7 Inheritance of Enabled-sets in Arche

Like Rosette, Arche [BI92] uses enabled-sets and the inheritance of synchronisation code
in both is similar in many respects. As such, we will not work through a complete set
of programming exercises to evaluate Arche, but rather just discuss the similarities and
differences between the two languages.

In Arche, several become statements can be executed in an operation. If this happens
then only the last one executed before the end of the operation will take effect. This relaxation
on the usage of the become statement reduces the harmful effects of the ISVIS conflict in

Arche, as we now discuss.
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If a subclass instantiates a generic synchronisation policy different to that of its parent
class then this means that along with defining new enabled-sets, the synchronisation code
inside the bodies of operations needs to be changed too. The 4th and 6th programming
exercises used to evaluate Rosette (on pages 190 and 191, respectively) are examples of this,
and in these the operations had to be re-implemented anew. Arche, however, can handle
this situation more gracefully by incrementally modifying the operations to add on the new
synchronisation code. This works because if several become statements are executed in an
operation then only the last one takes effect.

For example, a subclass might change the synchronisation code in an inherited operation

as follows:

Foo(...){

super.Foo(. . .);

“new synchronisation code”

}

Likewise, if a subclass wishes to incrementally modify the sequential code of an inherited

operation then it can do so as follows:

Foo(...){

super.Foo(. . .);

“new sequential code”

}

We were unable to do this in Rosette due to its restriction that the become statement should
appear at the end of an operation. However, since Arche relaxes this restriction, a become
statement can be executed via the call to Foo in the parent class and then more sequential
code executed afterwards.

In effect, Arche uses the same synchronisation mechanism as Rosette, but a different
inheritance mechanism—one which reduces the harmful effects of the ISVIS conflict. However,
Arche is not without problems. In particular, if a subclass wishes to totally re-implement the
sequential code of an operation then it must also re-implement the synchronisation code of
that operation since it is impossible to reuse the synchronisation code of an operation without

also reusing its sequential code.

12.8 Inheritance of Synchronisation Code in Eiffel||

The Eiffel|| language does not support concurrency within objects. As such, we use the ISVIS

matrix shown in Figure 11.3 for evaluation.

12.8.1 1st Column of the Matrix

We start off with some programming exercises that test the first column of the ISVIS matrix.
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1st Programming Exercise—cell(2, 1)

Write a synchronised class that contains operations A and B, that execute in strict alterna-
tion, i.e., the SPC of this class is:

Alternation] {A}, {B} ]
Inherit from this class and make the following changes:

o Totally re-implement operation A. (This tests cell(2a, 1).)

e Incrementally modify operation Put. (This tests cell(2b, 1).)

The code for this exercise is shown in Figure 12.26. In this case we can see that the mod-
ification of the sequential code does not hinder the reuse of the inherited synchronisation
code. Note that the serve_oldest operation is non-blocking, i.e., if it cannot find a suit-
able invocation to serve then it returns immediately. As such, it is preceded by a call to

wait_for_invocation_of.

class Base inherits PROCESS { class Derived inherits Base {
B(...){... } B(...) { super.B(...); ... }
Live() // no change to Live
{ while true do }
wait _for_invocation_of(A);
serve_oldest(A);
wait _for_invocation_of(B);
serve_oldest(B);

end

Figure 12.26: 1st programming exercise (Eiffel||)

2nd Programming Exercise—cell(3c, 1)

As in the previous example, write a synchronised class that contains operations A and B,

that execute in strict alternation, i.e., the SPC of this class is:
Alternation] {A}, {B}]

Inherit from this class and introduce a new operation, C'. This necessitates a change in the

SPC so change it to:

Alternation] {A}, {B, C}]
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The base class is as in the previous exercise (shown in Figure 12.26). The derived class is
shown in Figure 12.27. As can be seen, the synchronisation code had to be re-implemented
anew in order to accommodate the new operation. In general, Eiffel|| does not provide any
means of incrementally modifying synchronisation code.

One exception to this is the default synchronisation policy provided by the implementation
of Live in the class PROCESS. This policy is written in a manner that is independent of the
number of operations upon which it is instantiated. Thus, this implementation of Live could
implement “FCFS[ {A, B} ]” in a base class and “FCFS[{A, B, C} ]” in a subclass that

introduces a new operation, C.

class Derived inherits Base {
Live()
{ while true do
wait _for_invocation_of(A);
serve_oldest(A);
wait_for_invocation_of(B, C);
serve_oldest(B, C);

end

Figure 12.27: 2nd programming exercise (Eiffel||)—derived class

12.8.2 2nd Column of the Matrix

We now move onto the second column of the ISVIS matrix.

3rd Programming Exercise—cell(1, 2)

Write a synchronised class that contains operations, A and B, and gives priority to servicing

invocations of A, i.e., the SPC for the class is:
Priority[ {A}, {B}]

Inherit from this class and swap the priority of the operations, i.e., change the SPC to be:
Priority[ {B}, {A}]

The base class for this exercise is shown in Figure 12.28. The only change that the derived
class needs to make is to replace references to operation A with B and vice versa. However, as
in the previous exercise, the only way this can be done is to re-implement the synchronisation

code anew.
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class Base inherits PROCESS {

Live()
{ while true do
wait_for_invocation_of(A, B);
if exist_invocation_of(A) then serve_oldest(A);
else serve_oldest(B);
endif

end

Figure 12.28: 3rd programming exercise (Eiffel||)—base class

An alternative programming exercise for this cell would be for the subclass to instantiate a
different generic policy rather than re-instantiate the same policy as used in the parent class.
For example, the SPC might change from a Priority policy to an Alternation policy. The
results would be the same, i.e., changing the policy would not hinder the reuse of inherited
sequential code, and the synchronisation code would have to be re-implemented anew rather
than there being a possibility to incrementally modify the synchronisation code inherited

from the parent class.

4th Programming Exercise—cell(2, 2)

As in the previous exercise, write a synchronised class that contains operations, A and B,

and gives priority to servicing invocations of A, i.e., the SPC for the class is:
Priority[ {A}, {B}]

Inherit from this class and swap the priority of the operations, i.e., change the SPC to be:
Priority[ {B}, {A}]

Also, totally re-implement operation A, thus testing cell(2a, 2), and incrementally modify
operation B, thus testing cell(2b, 2).

The code for this exercise is quite similar to that of the previous one, with the addition
that the sequential operations have been changed. The changes to the sequential code do not

affect the synchronisation code, nor vice versa.

5th Programming Exercise—cell(3c, 2)

Write a synchronised class that contains operations, A and B, and gives priority to servicing

invocations of A, i.e., the SPC for the class is:
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Priority[ {A}, {B}]

Inherit from this class and make the following changes:

e Change the synchronisation code so that it implements an Alternation policy.

e Introduce a new operation, ', the synchronisation constrains of which will be similar
to that of B.

The base class is the same as in the third programming exercise (Figure 12.28). The derived
class is shown in Figure 12.29. As can be seen, the introduction of the new operation forces
a rewrite of the synchronisation code but this is obtained for free since the synchronisation

policy is being changed anyway.

class Derived inherits Base {
Live()
{ while true do
wait _for_invocation_of(A);
serve_oldest(A);
wait_for_invocation_of(B, C);
serve_oldest(B, C);

end

Figure 12.29: 5th programming exercise (Eiffel||)—base class

12.8.3 Discussion

In Eiffel||, the synchronisation code of a class is placed in the Live operation rather than being
spread out among all the operations of the class as in the Enabled Sets-based mechanisms.
The advantage of this separation is clear: a re-implementation of Live does not necessitate a
re-implementation of the sequential operations, and vice versa. (Of course, the introduction of
a new operation will necessitate a change of the synchronisation code.) The main draw-back
of Fiffel|| is that it does not provide any means to make incremental modifications to syn-
chronisation code. If any change is made to Live then it must be re-implemented anew. This
is in contrast to the guard-based mechanisms and the Enabled Sets-based mechanisms, both
of which make an attempt (albeit not an entirely successful one) to permit synchronisation

code to be incrementally modified.
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12.9 Generic Synchronisation Policies

This chapter has employed the ISVIS matrix to evaluate how various inheritance mechanisms
for synchronisation code conflict with the inheritance of sequential code. Throughout these
evaluations the concept of generic synchronisation policies has been used as a means of
discussing the ISVIS conflict. However, as we have shown in Part III of this thesis, it is

possible to provide language support for GSPs. As such, we now evaluate how the use of
GSPs might help in tackling the ISVIS conflict.

12.9.1 1st Column of the Matrix

We start off with some programming examples to test the cells in the first column of the
ISVIS matrix.

1st Programming Exercise—cell(2a, 1)) and cell(2b, 1)

Write a synchronised class that contains operations A, B and C, and the following synchro-

nisation policy:
ReadersWriter[ {A, B}, {C} ]
Inherit from this class and do the following;:

e Totally re-implement A, keeping it as a read-style operation. (This tests cell(2a, 1)).
o Incrementally modify B, keeping it as a read-style operation. (This tests cell(2b, 1)).
The code of the base and derived classes is shown in Figure 12.30. In this case we can see

that, as expected, the modification of the sequential code did not hinder the reuse of the

inherited synchronisation code.

class Base { class Derived inherits Base {
C(...){...} B(...) { super.B(...); ... }
synchronisation }

ReadersWriter[ {A, B}, {C} ]

}

Figure 12.30: 1st Programming exercise (generic synchronisation policy)

2nd Programming Exercise—cell(3c, 1)

Using the same base class as in the previous programming exercise, inherit and make the

following change to the derived class:

Introduce a new write-style operation, D.
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Introducing this new operation violates the inherited SPC and so the following new one is

adopted:
ReadersWriter[ {A, B}, {C, D} ]

The code for the derived class is shown in Figure 12.31 (the base class is as previously
shown in Figure 12.30). The change to the sequential code has necessitated a change to the
synchronisation code, which is achieved in just a single line of code: by re-instantiating the
same generic policy. Note that this re-instantiation can be written anew or written as an
incremental modification of the instantiation of the policy in the parent class. (Currently,

only the former is supported in GASP.)

class Derived inherits Base {

D(..){...}

synchronisation
ReadersWriter[ {A, B}, {C, D} ]
// alternatively. ..
// super.policy[ super.ReadOps, super.WriteOps + {D} ]

Figure 12.31: 2nd Programming exercise (generic synchronisation policy)—derived class

3rd Programming Exercise—cell(3a, 1) and cell(3b, 1)

Using the same base class as in the previous programming exercises, inherit and make the

following change to a derived class:
Totally re-implement B in a manner that makes it become a write-style operation.
Making this change violates the inherited SPC and so the following new one is adopted:

ReadersWriter[ {A}, {B, C} ]

As in the previous exercise, the re-instantiation of the generic synchronisation policy takes
just a single line. The derived code is shown in Figure 12.32 (the base class is as previously
shown in Figure 12.30).

This programming exercise involved a total re-implementation of B and hence tested
cell(3a, 1); however, it is obvious that if B had been incrementally modified (thus testing
cell(3b, 1)) then the same results would have been obtained.

12.9.2 2nd Column of the Matrix

We now move on to test the second column of the ISVIS matrix in which changes are made
to the synchronisation code of a subclass that, by themselves, do not necessitate any change

to the inherited sequential code.
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class Derived inherits Base {

B(...){...}

synchronisation
ReadersWriter[ {A}, {B, C} ]
// alternatively. ..
// super.policy[ super.ReadOps — {B}, super.WriteOps + {B} |

}

Figure 12.32: 3rd Programming exercise (generic synchronisation policy)

4th Programming Exercise—cell(1, 2)

Write a synchronised base class that contains operations A, B and C, and the following SPC:
ReadersWriter[ {A, B}, {C} ]

Inherit from this class and in the derived class change the SPC to be:
ReadersPriority[ {A, B}, {C} ]

The code for the base and derived classes are shown in Figures 12.33 and Figure 12.34,

respectively.

class Base {

synchronisation

ReadersWriter[ {A, B}, {C} ]

}

Figure 12.33: 4th Programming exercise (generic synchronisation policy)—base class

class Derived inherits Base {
// no change to seq code
synchronisation
ReadersPriority[ {A, B}, {C} ]
// alternatively. ..
// ReadersPriority[ super.ReadOps, super.WriteOps |

}

Figure 12.34: 4th Programming exercise (generic synchronisation policy)—derived class

As can be seen, the change in the synchronisation code does not hinder the inheritance

of the sequential code. Also, even though the subclass uses a different generic policy to that
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in the parent class, the instantiation of the policy in the subclass can be expressed terms of

the instantiation of the policy in the parent class.

5th Programming Exercise—cell(2, 2)

This exercise is similar to the previous one, except that the derived class makes some changes
to the sequential code as well as to the synchronisation code. The changes to the sequential
code do not violate the inherited SPC and hence should not necessitate changes to the
synchronisation code.

Write a synchronised base class that contains operations A, B and (', and the following

SPC:
ReadersWriter[ {A, B}, {C} ]
Inherit from this class and in the derived class make the following changes:

e Change the synchronisation code so that it implements:
ReadersPriority[ {A, B} {C} ]

e Totally re-implement A, keeping it as a read-style operation. (This tests cell(2a, 2)).

o Incrementally modify B, keeping it as a read-style operation. (This tests cell(2b, 2)).

There is little point in showing the code for the derived class since it is similar to that of the
previous exercise (the code of which is shown in Figure 12.34), except that operations A and
B are modified as mentioned above. This modification of the sequential operations does not

hinder the inheritance of synchronisation code at all.

6th Programming Exercise—cell(3, 2)

As in the two previous examples, the derived class instantiates a generic policy different to
that used in the base class. This change in policy should not affect the sequential code.
However, the programmer makes some changes to the sequential code anyway—changes that
would have necessitated change in the synchronisation code even if a programmer had not
planned on changing the synchronisation code.

Write a synchronised base class that contains operations A, B and (', and the following

SPC:
ReadersWriter[ {A, B}, {C} ]
Inherit from this class and in the derived class make the following changes:

e Change the synchronisation code so that it implements a ReadersPriority policy.

e Totally re-implement C, and in doing so change it into a read-style operation. (This
tests cell(3a, 2)).
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o Incrementally modify A4, and in doing so change it into a write-style operation. (This
tests cell(3b, 2)).

¢ Introduce a new write-style operation, D. (This tests cell(3c, 2)).

The code for the derived class is shown in Figure 12.35 (the base class is as previously shown
in Figure 12.33).

class Derived inherits Base {
A(...) { super.A(...); ...}

synchronisation
ReadersPriority[ {B, C}, {A, D} ]
// alternatively. ..
// ReadersPriority[ super.ReadOps — {A} + {C}, super.WriteOps — {C} + {A, D} ]

Figure 12.35: 6th Programming exercise (generic synchronisation policy)—derived class

As before, the change from the basic Readers Writer policy to ReadersPriority does not
have any effect on the sequential code. However, the changes made to the sequential code do
affect the synchronisation code, to such an extent that it is shorter to express the instantiation
of the policy in the subclass anew rather than as an incremental modification of the policy

in the parent class.

12.9.3 3rd Column of the Matrix

We now move on to test the third column of the ISVIS matrix in which changes are made
to the synchronisation code of a subclass that necessitate change to the inherited sequential

code.

7th Programming Exercise—cell(1, 3)

Write a base class that contains operations A, B and (', all of which update instance variables

and hence execute in mutual exclusion. The SPC of this class is:
Mutex[ {A, B, C} |

Inherit from this class and change the synchronisation policy to Readers Writer, with A

treated as a read-style operation, in order to permit more internal concurrency. This changes

the SPC to:
ReadersWriter[ {A}, {B, C} ]
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This, of course, necessitates that operation A be re-implemented to ensure that it does not
update any instance variables. The code for the base and derived classes are shown in

Figures 12.36 and 12.37, respectively.

class Base {

synchronisation

Mutex[ {A, B, C} |

}

Figure 12.36: 7th Programming exercise (generic synchronisation policy)-base class

class Derived inherits Base {

synchronisation
ReadersPriority[ {A}, {B, C} ]
// alternatively. ..
// ReadersPriority[ {A}, super.Ops — {A} ]

Figure 12.37: 7th Programming exercise (generic synchronisation policy)—derived class

8th Programming Exercise—cell(2, 3)

As in the previous exercise, write a base class that contains operations A, B and C, all of
which update instance variables and hence execute in mutual exclusion, i.e., the SPC of the

class is:
Mutex[ {A, B, C} |

Inherit from this class and in the derived class change the synchronisation policy to Reader-
sWriter, with A treated as a read-style operation, in order to permit more internal concur-

rency. This changes the SPC to:
ReadersWriter[ {A}, {B, C} ]

As before this necessitates that operation A be re-implemented to ensure that it does not

update any instance variables. Make the following additional changes to the sequential code:

e Totally re-implement B in a manner that keeps it as a write-style operation. (This tests

cell(2a, 3).)
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o Incrementally modify C in a manner that keeps it as a write-style operation. (This
tests cell(2b, 3).)

The code for this exercise is similar to that of the previous exercise (shown in Figures 12.36
and 12.37). The only difference is that the derived class re-implements operations B and C.

These additional changes to the sequential code do not affect the synchronisation code.

9th Programming Exercise—cell(3, 3)

As before, write a base class that contains operations A, B and ', all of which update

instance variables and thus execute in mutual exclusion, i.e., the SPC of the class is:
Mutex[ {A, B, C} |
Inherit from this class and make the following changes:

e Change the synchronisation policy to ReadersWriter and have it treat A as a read-
style operation. As in the previous two exercises, this necessitates that operation A be

re-implemented.

e Totally re-implement B, in a way that changes it into a read-style operation. This will

necessitate a change in the synchronisation code. (This tests cell(3a, 3)).

e Introduce a new write-style operation, D. (This tests cell(3c, 3)).
The resulting SPC of the subclass is:
ReadersWriter[ {A, B}, {C, D} ]

The code for the derived class is shown in Figure 12.38 (the base class is as previously shown
in Figure 12.36). As one might expect, since changes are made to both the sequential code
and the synchronisation code, there is not much reuse. This exercise does not test cell(3b, 3).
This can be remedied by changing the exercise so that operation A is incrementally modified

instead of being re-implemented anew.

12.9.4 Discussion

Recall that there are two parts to the ISVIS conflict:
(i) Changes to the sequential code of a class might necessitate change to its synchronisation
code.
(ii) Similarly, changes to the synchronisation code of a class might necessitate change to its

sequential code.

The use of generic synchronisation policies does not eliminate part (i) of the ISVIS con-
flict. However, it does mean that whatever changes have to be made to synchronisation code

can be achieved in just a single line of code (assuming that the policy instantiated in the
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class Derived inherits Base {

synchronisation
ReadersPriority[ {A, B}, {C, D} ]
// alternatively. ..
// ReadersPriority[ {A, B}, super.Ops — {A, B} + {D} ]

Figure 12.38: 9th Programming exercise (generic synchronisation policy)

subclass has already been written; if not then there will be extra work involved in writing this
policy). Thus, although this part of the ISVIS conflict has not been eliminated, its harmful
effects have been reduced to a trivial level. In particular, the (re-)instantiation of a generic
synchronisation policy in a subclass requires just a single line of code irrespective of whether
the instantiation is written anew or as an incremental modification of the instantiation of
the policy in the parent class. This is always less (often significantly less) lines of code than
is required to incrementally modify synchronisation code in other inheritance mechanisms
surveyed. It is also less mental effort since generic synchronisation policies provide a higher
level of abstraction than, say, guards or enabled-sets. As such, we claim that generic syn-
chronisation policies represent a better way to tackle this part of the ISVIS conflict than the
various techniques for inheriting and incrementally modifying synchronisation code that the
other approaches advocate.

It is not surprising that the concept of GSPs is so effective at reducing the harmful effects
of the ISVIS conflict. After all, the ISVIS arises out of two different uses of inheritance
conflicting with one another. GSPs simply replace one of these uses of inheritance with
genericity as the primary means to reuse code. By reducing the role of inheritance, it naturally
reduces the harmful effects of the ISVIS conflict.

Part (i) of the ISVIS conflict is often overlooked. The use of generic synchronisation
policies does not help in this regard. If a change in synchronisation code necessitates changes
in sequential code then those changes have to be made and the use of generic synchronisation

policies will not be of any help.

12.10 Conclusions

In this chapter we have used the ISVIS matrix to evaluate how various approaches to the
inheritance of synchronisation code conflict with the inheritance of sequential code.
None of the inheritance mechanisms solve the ISVIS conflict. (It is probably impossible

to do so.) However, all the mechanisms surveyed use techniques to try to reduce its harmful
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effects. These techniques generally fall into two categories: (i) keep synchronisation code and
sequential code separated from one another so that the inheritance of one is syntactically
separate from the inheritance of the other; and (ii) provide a means to incrementally modify
inherited synchronisation code. Many but not all mechanisms adopt both approaches. For
example, Eiffel|| employs the first approach but not the second. Conversely, Rosette and
Arche use the second approach but not the first. The most effective inheritance mechanisms
seem to be those that employ both techniques.

We propose an alternative approach: that genericity, rather than inheritance, be used as
the primary means of reusing synchronisation code. We have shown in Section 12.9 that the
use of generic synchronisation policies dramatically reduces the harmful effects of the ISVIS
conflict. It is both shorter and easier to re-instantiate a generic policy than it is to try to

incrementally modify inherited synchronisation code.
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Chapter 13

Related Work and Summary of

Contributions

This chapter brings Part IV of the thesis to a close. We start in Section 13.1 with a review
of previous research into the ISVIS conflict. Then in Section 13.2 we summarise our own

contributions in this area and finish off in Section 13.3 with some suggestions for future work.

13.1 Related Work

This section presents a historical overview of previous research into (what we call) the ISVIS
conflict. This overview shows that, to date, there has been an almost universal misunder-

standing within the research community regarding the nature of the conflict.

13.1.1 Early Research into the Problems with the Use of Inheritance in
COOPLs

It has been known since at least 1987 that there are problems with the use of inheritance
in COOPLs. For example, America [Ame87] noted that in the POOL language, inheritance
could be employed to reuse the sequential methods of a class but it did not seem practical to
inherit the “body” (akin to the Live routine in Eiffel||) of the class.

Awareness of the problem increased in 1989 with the publication of two papers, both of
which showed that the problem with inheritance might hinder not just the reuse of inherited
synchronisation code but also the reuse of inherited sequential code. The message in both pa-
pers was effectively that “inheritance and [synchronisation] tend to interfere with each other”
[KL89, pg. 297] [TS89, pg. 103]. This wording implied that it might be possible to tackle
the problem by developing new synchronisation mechanisms that do not conflict/interfere
with inheritance. In the first of these papers [KL89], Kafura and Lee proposed the behaviour
abstraction mechanism for the ACT++ language. This was slightly modified by Tomlinson

and Singh [TS89] for the Rosette language and the mechanism was renamed as Enabled-sets.
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Behaviour abstraction and Enabled-sets were presented as being synchronisation mecha-
nisms. However, it would have been more apt to have described them as being inheritance (of
synchronisation code) mechanisms. For example, the synchronisation construct in Enabled-
sets was the become statement which caused a change in synchronisation state and in so
doing determined what operations could execute next. Similar synchronisation capabilities
had already existed, albeit in slightly different form, in Hybrid [Nie87]. What set behaviour
abstraction and Enabled-sets apart from previous mechanisms was that the operations per-
mitted to execute next were not specified directly as in Hybrid but rather indirectly via a set
that could be inherited and incrementally modified in a subclass. It was this inheritance ca-
pability, rather than the synchronisation mechanism per se, that reduced some of the harmful
effects of the ISVIS conflict.

This presentation of an inheritance (of synchronisation code) mechanism as a synchroni-
sation mechanism marked the start of what has become a long-standing confusion over the
nature of the ISVIS conflict and, consequently, how the conflict might be tackled.

Other, early papers also indicated that the problem was due to an interference between
synchronisation and inheritance and claimed to have developed synchronisation mechanisms
that were integrated with inheritance [Neu91] [BI92] [GW91, pg. 193].

13.1.2 Matsuoka’s Analysis of the Inheritance Anomaly

Matsuoka realised that the mechanisms proposed in Act++ and Rosette did not provide
general solutions to the problems associated with the use of inheritance in COOPLs. He
performed his own analysis and developed a suite of programming exercises to illustrate
other ways in which the inheritance anomaly, as he called it, might manifest itself [MWY90]
[MY90] [MY93] [Mat93]. Unfortunately, Matsuoka did not see that the problem was caused
by two uses of inheritance conflicting with one another. Rather, like others before him, he
thought that at “the heart of the problem is the semantical conflicts between the descriptions
of object-wise synchronisation and inheritance” [MY93, ps. 3] [Mat93, pg. 17].

This belief that the inheritance anomaly had its roots in synchronisation showed up in
Matsuoka’s classification of three categories of the inheritance anomaly. This classification

was given in terms of states, e.g., as used in Enabled-sets:

¢ Partitioning of acceptable states.
This occurred if a subclass split one of the inherited states in two. For example, if a
subclass of a bounded bufler introduced a new operation, Get2, that removed two items
from the buffer then this would result in the partial state being split into two states:

one-item and two-or-more-items.

¢ History-only sensitiveness of acceptable states. This was illustrated by a subclass
that introduced a new operation, GGet, that was similar to Gel except that it could
not execute immediately after an invocation of Put. This new operation was said to be

“history-sensitive” because its synchronisation constraints depended on the history of
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prior invocations upon the object.

¢ Modification of acceptable states. This occurred if a subclass made a change that
modified the states (conditions) under which most or all of the inherited operation could
execute. The example given was that of a subclass of a bounded buffer that introduced
two new operations, lock and unlock. The inherited operations, Pult and Get, could
execute only if the object was unlocked; hence the states (conditions) under which they

could execute had been modified.

There are several points to note about this classification.

Firstly, the “state” mentioned in each of these three categories is synchronisation state and
thus the names of Matsuoka’s three categories imply synchronisation (rather than inheritance)
as being the cause of the inheritance anomaly.

Secondly, we discussed in Section 11.5.2 why one should ensure that the programming
exercises used to evaluate an inheritance (of synchronisation code) mechanism do not require
more expressive power than that available in the associated synchronisation mechanism. To
recap, failure to ensure this might lead to programmers having to mix synchronisation code
with sequential code in order to implement the programming exercises. This mixing, rather
than any inherent limitation of the inheritance mechanism, can hinder code reuse.

The programming exercises Matsuoka used for the history-only sensitivity and modifi-
cation of acceptable state categories required that a subclass maintain extra variables. For
example, synchronisation of the GGet operation required that a boolean variable, after_put,
be maintained. Similarly, preventing Put and Get from executing if the buffer was locked re-
quired the maintenance of a boolean variable, is_locked. These variables were synchronisation
variables. However, since many synchronisation mechanisms surveyed by Matsuoka did not
have sufficient expressive power to maintain synchronisation variables, they were maintained
as instance variables in the subclass. In effect, Matsuoka used programming exercises that
demanded high expressive power and hence were unsuitable for the evaluation of inheritance
(of synchronisation code) mechanisms.

One result of this was that Matsuoka noticed that different synchronisation mechanisms
avoided different categories of the inheritance anomaly. (This was because synchronisation
mechanisms varied in the expressive power they possessed, but Matsuoka did not comprehend
this.) He therefore proposed that a language support several synchronisation mechanisms,
reasoning there was a good chance that, between them all, these mechanisms might avoid
most/all categories of the inheritance anomaly [MTY93, pg. 113]. For example, if the use of
a particular mechanism to implement the synchronisation policy for a base class resulted in
subclasses suffering a particular category of inheritance anomaly then a programmer could
re-implement the synchronisation code of the base class in a different mechanism that did
not result in subclasses suffering that category of inheritance anomaly.

Although Matsuoka claimed that there were three categories of inheritance anomaly, he

never actually defined what an inheritance anomaly was supposed to be. This lack of a clear

212



definition was probably due to the fact that Matsuoka tried to analyse and categorise the

inheritance anomaly in terms of synchronisation, which had nothing to do with the problem.

13.1.2.1 The Spread of the Misunderstanding

Matsuoka’s analysis was widely disseminated within the research community, and was highly
praised as being “pioneering work” [Ber94, pg. 113] and “an excellent analysis and survey of
the anomaly” [Mes93, pg. 221]. With it was spread the basic misunderstanding of the nature
of the problem, i.e., that it was a conflict between synchronisation and inheritance which
might be solved by developing new synchronisation mechanisms that did not conflict with
inheritance.

Soon researchers started developing synchronisation/inheritance mechanisms that imple-
mented all of programming exercises used in Matsuoka’s analysis and they claimed that they
had solved the inheritance anomaly [Mes93] [L6h93] [LL94] [Tho94]. From reading these
papers, one would be lead to believe that the “solutions” were due to the synchronisation
mechanisms. This was partly true as the mechanisms had enough expressive power to handle
Matsuoka’s exercises. However, as with previous work, it was rather that these mechanisms
provided a means to inherit synchronisation code that lead to a reduction of the harmful

effects of the ISVIS conflict.

13.1.3 Meseguer’s Attempt to Eliminate Synchronisation Code

As our analysis in Chapter 11 shows, the ISVIS conflict is due the inheritance of synchronisa-
tion code conflicting with the inheritance of sequential code. Thus, it seems logical that the
conflict could be resolved by eliminating one of these forms of inheritance. This is, in effect,
what the use of GSPs does: it eliminates the inheritance of synchronisation code and replaces
it with genericity. In so doing, it considerably reduces (though does not entirely eliminate)
the harmful effects of the ISVIS conflict.

However, if a person misunderstood the nature of the problem and thought that the
conflict was between synchronisation and inheritance then they might reason that the conflict
could be resolved by eliminating synchronisation. Such an approach was taken by Meseguer

who claimed that:

“The inheritance anomaly [is] a problem caused by the very presence of syn-
chronisation code. The logical solution if we take this hypothesis seriously is
to completely eliminate synchronisation code” [Mes93, pg. 221] (emphasis in the

original).

Despite the incorrect assumption that the cause of the inheritance anomaly is rooted in
synchronisation, this approach had some validity since, by eliminating synchronisation code,
there could be no conflict between the inheritance of synchronisation code and the inheritance

of sequential code.
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However, Meseguer did not “completely eliminate” synchronisation code as he claimed,
but rather made synchronisation code implicit in the declarative coding style of the Maude
language [Mes93]. Unfortunately, this did not work to eliminate the inheritance anomaly, as
we now discuss.

One example in the paper on Maude [Mes93, pg. 234] involved a subclass of a bounded
buffer that introduced a new operation, GGet. This operation was similar to Get except that
it could not execute immediately after Put. In order to implement this, a boolean variable,
after_put, was introduced. This variable was claimed to be an instance variable but was
actually a synchronisation variable that just happened to be implemented as an instance
variable. Thus, rather than eliminating synchronisation code, Maude simply mixed it back
in with sequential code.

In this particular example, all the inherited operations had to be re-implemented anew in
order to maintain after_put. Meseguer claimed that the inability to reuse any inherited code
in this example was not an inheritance anomaly and was, in fact, entirely appropriate. This
was a rather surprising claim. Equally surprising was that other researchers [LL94] [Mat93]
[Tho94] [L6h93] were apparently prepared to accept this claim at face value. This, we feel,

is a result of trying to solve an ill-defined problem (the inheritance anomaly).

13.1.4 Bergmans’ Analysis of the Inheritance Anomaly

As far as we know, there have been only two attempts, other than our own, to carry out
a detailed analysis of the inheritance anomaly. The first, by Matsuoka, has already been
discussed. In this section we discuss the other analysis, by Bergmans [Ber94].

Bergmans made the common mistake of thinking that the problem was due to “conflicts
between inheritance and synchronisation” [Ber94, pg. 100]. Like Matsuoka, Bergmans claimed
to know the causes of the inheritance anomaly, but never actually defined what an inheritance
anomaly was supposed to be. According to Bergmans, the origins of the inheritance anomaly

were:

e Synchronisation modularity.
Synchronisation code should be syntactically separate from sequential code so that they

can be inherited separately from one another.

¢ Synchronisation granularity.
It is easier to inherit synchronisation code if it is written in several parts (e.g., as in
Enabled-sets or guard-based mechanisms) rather than as one monolithic unit (e.g., as

in Path Expressions or the Live routine in Eiffel|).

¢ Expressiveness for synchronisation conditions.
If a synchronisation mechanism does not have sufficient expressive power to directly
implement the synchronisation policy used in a class then programmers may have to

resort to mixing synchronisation code with sequential code in order to implement the
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policy. This, of course, results in a loss of modularity and hence may hinder the

inheritance of code.

In the above list, the bold text is the actual titles that Bergmans gave to what he claimed
were the causes of the inheritance anomaly [Ber94, pg. 100]. These titles clearly imply
that the causes of the inheritance anomaly were rooted in synchronisation rather than in
inheritance. However, we have shown in Chapter 11 that the ISVIS conflict is due to two
uses of inheritance conflicting with each other. The “causes” that Bergmans claimed are not
the actual origins of the conflict but rather are issues than can exacerbate the conflict. Even
with full synchronisation modularity, suitably small synchronisation granularity and excellent

expressive power, the ISVIS conflict will still exist.

13.1.5 Summary of Related Work

Virtually all the previous work on the problem of using inheritance in COOPLs has misun-
derstood the nature of the problem, thinking that it is a conflict between synchronisation
and inheritance, rather than a problem rooted in inheritance. (It must be said that, for a
time, the present author also misunderstood the nature of the conflict. An early version of
the analysis of the ISVIS conflict in this thesis viewed the conflict as being between synchro-
nisation and inheritance [MWBD92].) This basic misunderstanding has hindered progress in
tackling the problem in two ways.

Firstly, this misunderstanding has prevented researchers from being able to actually define
the problem, which in turn makes it rather difficult to solve the problem.

Secondly, researchers have thought that a solution to the problem lay in either developing
new synchronisation mechanisms or eliminating synchronisation code entirely, rather than
developing either new inheritance mechanisms or alternatives to inheritance. Many of the
proposed “solutions” actually combine a new synchronisation mechanism with an inheritance
mechanism but usually the synchronisation mechanism is emphasised instead of the inheri-
tance mechanism as being the relevant factor in reducing the amount of code that has to be

redefined in subclasses.

13.2 Summary of our Contributions

There are problems associated with the use of inheritance in COOPLs. Tt is widely thought
that one of these problems is due to a conflict between synchronisation and inheritance [TS89]
[KL89] [Neu91] [GWI1] [Tho94] [L6h93] [BBI*] [Mes93] [BFS93] [Mat93] [Cou94] [Ber94].
Our analysis of this problem shows that this understanding of the nature of the problem is
incorrect and that the problem is rooted in inheritance. In particular, the problem is due to
a conflict between two uses of inheritance: (i) inheritance employed to reuse synchronisation
code, and (ii) inheritance employed to reuse sequential code.

We have developed a tool, the ISVIS matrix, that can be used to examine the harmful
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effects of the conflict when an inheritance mechanism for sequential code interacts with an
inheritance mechanism for synchronisation code. Qur survey of how a common form of single-
inheritance for sequential code interacts with several inheritance mechanisms for synchronisa-
tion code confirms that the harmful effects of the conflict can be reduced if (i) synchronisation
code and sequential code are separated from one another, and (ii) a means is provided for a
subclass to incrementally modify inherited synchronisation code. However, our survey also
shows that incremental modification of synchronisation code has two limitations. Firstly, it
can be verbose, often requiring as much code as re-implementing the desired synchronisation
policy anew. Secondly, it cannot always be used, thus necessitating that synchronisation code
be rewritten anew.

The approach we propose to reduce the harmful effects of the ISVIS conflict is to employ
generic synchronisation policies. Since a subclass can (re-)instantiate a generic synchronisa-
tion policy in just a single line of code, this approach is often considerably shorter than trying
to incrementally modify inherited synchronisation code. Also, since generic synchronisation
policies are at a high level of abstraction, it usually less error-prone to re-instantiate a generic

synchronisation policy than to incrementally modify, say, inherited guards.

13.3 Limitations of our Research and Future Work

We analysed the harmful effects of the ISVIS conflict for a common form of single-inheritance
for sequential code. However, as we pointed out in Section 11.5.1, other forms of inheritance
for sequential code also exist. These should also be examined to see if some inheritance
constructs are more (or less) likely to result in harmful ISVIS conflicts than other inheritance
constructs.

Aside from the ISVIS conflict, there is another problem with the use of inheritance in
COOPLs: it can violate encapsulation (as was briefly discussed in Section 11.1. This is
another area that warrants study.

Finally, we have shown that the ISVIS conflict is not peculiar to synchronisation but
rather is intrinsic to inheritance. This finding suggests that similar conflicts may arise in
other fields where programmers try to inherit several different kinds of code in a single class
hierarchy. For example, problems in the area of real-time programming have been noted by
Askit et al. [ABvdSB94]. However, the language and analysis they use is quite similar to that
of researchers who claim that the inheritance anomaly is a conflict between synchronisation
and inheritance. This clearly indicates two things. Firstly, that the conflicts between the
inheritance of different kinds of code are not confined to the area of synchronisation. Secondly,

that confusion over the nature of such conflicts is widespread in other areas too.
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Part V

Conclusions
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Introduction to Part V

Part V brings this thesis to a close. Chapter 14 outlines several possibilities for future work.

Then Chapter 15 summarises the main contributions of this thesis.
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Chapter 14

Future Work

This chapter suggests some possibilities for future work. Most of these possibilities are
discussed via examples. For instance, Section 14.3 outlines a sample timeout mechanism in
order to show that it is feasible to extend the Sos paradigm in this direction. In such cases,
the sample mechanisms are presented purely for illustrative purposes and are not intended as

polished designs. None of the sample mechanisms discussed in this chapter are implemented.

14.1 Summary of Future Work Discussed in the Body of this
Thesis

We start this chapter by briefly summarising some areas for future work that have already

been discussed at length in the main text of this thesis.

Synchronisation in client objects. The Sos paradigm concerns itself solely with syn-
chronisation in service objects. Some languages provide support for synchronisation in client
objects—futures [Hal85] and wait-by-necessity [Car93] are two examples of constructs for
client object synchronisation. Of course, there is no strict division between client and service
objects since it is common for a service object to be, itself, a client of other objects. As such,
if a language provides constructs for both client object synchronisation and service object
synchronisation then it is important that these constructs work together in a harmonious

fashion.

Further analysis of the ISVIS conflict. Our analysis of the ISVIS conflict is incomplete
in two ways.

Firstly, our examination of the inheritance of sequential code was confined to a common
form of single inheritance. As we mentioned in Section 11.5.1, other forms of inheritance also
exist: multiple inheritance, Beta’s “inner” construct, Mixin-based inheritance, the ability of

a subclass to “undefine” inherited operations and so on.
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Secondly, our examination of the inheritance of synchronisation code was confined to
inheritance of synchronisation in service objects. It is possible that the ISVIS conflict also
exists for the inheritance of synchronisation constructs, e.g., futures [Hal85], in client objects.

Obviously, further research is required to obtain a more complete understanding of the

ISVIS conflict.

Optimisation of Esp. This thesis has briefly mentioned two techniques for optimising
Esp: the re-evaluation matrix and optimisation by transformation. However, we have not
invested much time to develop and apply these techniques. Optimisation of Esp—whether it
be performed by these or other techniques—is of great importance because, as our prototype
implementation has shown, a naive implementation of ESP can impose an overhead of hun-
dreds of instructions per invocation of a synchronised operation. This overhead limits the

use of EsP to applications that utilise only coarse-grained concurrency.

Open issues for generic synchronisation policies. Chapter 9 discussed some open
issues regarding generic synchronisation policies.

Firstly, generic synchronisation policies fully encapsulate the implementation details of
a policy. Even the synchronisation mechanism used to implement a policy is hidden from
programmers who instantiate the policy. One possibility this raises is that a language might
support several synchronisation mechanisms. Another possibility is that generic synchronisa-
tion policies might act as “glue” to interface between general-purpose programming languages
and special-purpose languages in which synchronisation policies are written.

Secondly, our prototype implementation of GASP permits a subclass to either inherit
the instantiation of a generic synchronisation policy “as is” from its parent class or to re-
instantiate it anew. The examples used in Section 12.9 indicate that it would be useful for a
subclass to be able to incrementally modify the instantiation of an inherited policy. However,
our prototype implementation does not support this. We do not foresee any difficulty in
providing this capability. However, as discussed in Section 11.1, this capability ties in with
the issue of inheritance violating encapsulation. As such, we feel that a detailed analysis of
the conflict between inheritance and encapsulation should be undertaken before providing
such support.

Finally, it would be useful to be able to instantiate several generic synchronisation policies
upon the operations of a class. However, as discussed in Section 9.3.2, this raises several

thorny issues which need to be addressed if such support is to be provided.

14.2 Development of Other Sos-based Synchronisation Mech-

anisms

This thesis has used just one synchronisation mechanism, Esp, to illustrate the concepts of

the Sos paradigm. However, Sos is not limited to Esp and the concepts of the Sos paradigm
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could be applied to develop other mechanisms.

As an example to show just how different other Sos-based synchronisation mechanisms
might be from Esp, this section presents a briel overview of another mechanism. Note that
this mechanism is just a paper design and has not been implemented. We introduce this
synchronisation mechanism, which is queue-based, through some examples. Then afterwards

we discuss some of its important points and compare it to Esp.

First-come, First-served Printer

The code in Figure 14.1 implements a FCFS printer. A single queue, Print(),is declared. This
is sorted by the relative arrival time of pending invocations. Actions are used to insert Print
invocations into this queue at their arrival and remove them from the queue when they start
execution. (Unlike Esp, programmers are responsible for maintaining queues of invocations.)
The guard for the invocation at the head of the queue expresses mutual exclusion but it does
not include anything to specify scheduling order since that is implicit in the maintenance of

the queue.

class FCFSPrinter {
Print(...) {... }
synchronisation

queue PrintQ sorted by arr_time;

arrival(Print) — { PrintQ.insert(this_inv); }
start(Print) — { PrintQ.remove_head(); }
PrintQ.head_guard: exzec(Print) = 0;

Figure 14.1: FCFS policy expressed in terms of a queue

Starvation-free, Shortest Job Next Scheduler

The code in Figure 14.2 implements a starvation-free version of the Shortest Job Next sched-
uler. There are just two differences between the code for this policy and the code for the
FCEFS printer (Figure 14.1). The first is the different sorting order of Print@). The second is
the start(Print) action. The latter iterates over invocations in Print) and decrements the
length of any that were skipped over. Since doing so may leave Print() in an unsorted state,

it is explicitly re-sorted afterwards.

Alarm Clock

The code in Figure 14.3 implements an alarm clock. As in the EsP implementation of

this problem (Figure 4.5 on page 51), we assume that the run-time system will invoke T'ick
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class FairSJN {
Print(int length, ...) { ... }
synchronisation

queue PrintQ sorted by length, arr_time;

arrival(Print) — { PrintQ.insert(this_inv); }
start(Print) —
{ PrintQ.remove_head();
for p in PrintQ do
if p.arr_time < this_inv.arr_time then p.length ——; endif

end
PrintQ.sort();

}
Print(Q.head_guard: exzec(Print) = 0;

Figure 14.2: Starvation-free, Shortest Job Next scheduler

periodically to mark the passage of time.

The synchronisation code maintains two queues: one for WakeUp and another for Tick.
Since the guard for invocations of Tick is true, invocations will be removed from Tick@)
almost as soon as they are inserted into it. In this case it may seem rather annoying to
have to maintain a queue for Tick at all, but that is the nature of this synchronisation
mechanism. At a WakeUp invocation’s arrival, its wakeup_time (a synchronisation local
variable) is calculated and this is used to sort WakeUp(Q. This sorting order means that the
Wake Up invocation to be woken up next is at the head of the queue. The resultant guard

for the head element of WakeUp() is trivial and intuitive.

14.2.1 Discussion

It is easy to see that this synchronisation mechanism is Sos-based since it embraces the four
concepts of Sos: (i) the mechanism is event-based and permits actions to be associated with
them; (ii) it employs a construct, guards, to cause pending invocations to start executing;
(iil) synchronisation code and variables are separated from sequential code and variables; and
(iv) the mechanism permits synchronisation code to access information about invocations.

There are two main difference between this mechanism and Esp.

The first difference concerns the management of invocations. Esp automatically maintains
collections of wailing and executing invocations, while this mechanism requires programmers
to explicitly maintain queues of pending invocations themselves. Thus in this mechanism
programmers have to do more “housekeeping” work.

The second difference concerns guards. Although both mechanisms employ guards, this
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class AlarmClock {
WakeUp(int period) { }
Tick() { )
synchronisation
int wakeup_time local to WakeUp;
queue WakeUpQ sorted by wakeup_time;
queue TickQ sorted by arr_time;

arrival(Tick) — { TickQ.insert(this_inv); }
start(WakeUp) — { TickQ.remove_head(); }
TickQ.head_guard: true;

arrival(WakeUp) —

{ this_inv.wakeup_time := term(Tick) + this_inv.period;
WakeUpQ.insert(this_inv);

}

start(WakeUp) — { WakeUpQ.remove_head(); }

WakeUpQ.head_guard: term(Tick) >= this_inv.wakeup_time;

Figure 14.3: Implementation of the Alarm Clock problem via queues

mechanism evaluates guards only for invocations at the head of queues while Esp potentially

evaluates guards for all pending invocations at each event.

These differences are enough to result in the two mechanisms having quite a different

“feel” to one another.

One advantage of this mechanism over Esp is that an unoptimised implementation of
it will be significantly more efficient than an unoptimised implementation of Esp. This is
because in re-evaluating the guards only of invocations at the head of queues rather than the

guards of all pending invocations, it cuts down dramatically on guard re-evaluation.

A disadvantage of this mechanism is that while its explicit support for queues makes it
very suitable for scheduling/queuing policies, it does not lend itself to some other types of
synchronisation policies. For example, while this mechanism can implement, say, the Dining
Philosophers problem, it cannot do it in an elegant manner. (The only implementation
approach that comes to mind is one which requires that a separate queue be maintained for

each table position.) As such its expressive power is not as good as that of Esp.

However, the most important point of this mechanism is that it is proof that Esp is not
the only synchronisation mechanism that can be designed within the Sos paradigm. It will

be interesting to see how S0s might be used in the future to develop other mechanisms.
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14.3 Support for Timeouts in the Sos Paradigm

A timeout is a period of time within which a pending invocation must start being serviced.!
If the invocation is delayed for longer than this time before it can be serviced then the
invocation is aborted and an exception raised in the caller. Timeouts are provided in some
languages as a way to support real-time programming.

In this section we show by example how the Sos paradigm might be extended to provide
support for timeouts. All that is required is the introduction of two new events—timing and
timeout—and an extra synchronisation variable local to invocations: timeout_value.

As its name suggests, temeoul_value indicates the timeout value of an invocation. The
default value is, say, infinite, indicating that invocations do not timeout. This default can
be overridden by a client when making an invocation. Example syntax to illustrate this is

shown below:

obj.foo(...); // infinite timeout by default

obj.foo(...) with timeout_value = 1.2 seconds;

Alternatively, synchronisation code in the service object might set a timeout value for invoca-
tions. For example, the following action assigns a timeout_value for invocations that have the
default value while honouring the timeout_value of invocations whose clients have explicitly

set it.

arrival(Foo) —
{ if this_inv.timeout_value = infinite then

this_inv.timeout_value := 10 seconds;

endif

For timeout_value to be useful, the run-time system needs to automatically generate
timing events to denote the passage of time. At these events, the timeoul_values of wailing
invocations are examined and if an invocation has timed out then a timeout event is generated
for it. (Note that it is unnecessary, and indeed wasteful, for timing events to be generated
periodically. Rather the run-time system might arrange for tming events to be generated
only when invocations are due to timeout.) It is probably most convenient if the run-time
system handles timing events automatically so that programmers need not concern themselves
with them. In fact, programmers need not even be aware that they exist. On the other
hand, timeout events are potentially of interest to programmers. For example, just as the
run-time system will, say, decrement the relevant wait synchronisation counter whenever an

invocation times out, so too might programmer-maintained synchronisation variables need to

!Some langnages might define a timeout to be a period of time within which a pending invocation must ter-
minate (rather than start) execution. It is even possible that a language might support both forms. Whichever

way it is defined is immaterial to the present discussion since the principles are the same.
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be updated; for this purpose programmers need to be able to associate actions with timeout
events.
The proposal outlined in this section is very tentative. However, it does show that adding

support for timeouts in Sos is feasible.

14.4 Exception Handling

Support for exceptions is becoming more and more common in object-oriented languages. The
form that such support takes varies dramatically from one language to another and, as such,
it can be difficult to generalise about exception mechanisms. However, one thing that can
be said is that languages that support exceptions provide ways to (i) raise an exception, and
(ii) handle an exception. We discuss exception handling here in Section 14.4, and exception
raising in Section 14.5.

In this section we discuss why it is important that a synchronisation mechanism be in-
tegrated with the host language’s exception handling mechanism. We then briefly outline
a way in which such integration might be achieved for Sos-based synchronisation mecha-
nisms. Section 14.5 discusses similar issues as they apply to a particular exception raising

mechanism; that of the Eiffel language.

14.4.1 The Need to Integrate Synchronisation with Exception Handling

An exception handler is a segment of code that will be executed when an exception is raised
during execution of an operation. The task of the handler is to attempt to process the
exception gracefully. In doing so it might be able to resume execution of the operation.
If not then the handler should place the variables of the object in a consistent state and
re-raise the exception in the caller. In this case, execution of the operation in which the
exception occurred is terminated abnormally. The possibility for abnormal termination has
consequences for synchronisation code as we now explain.

The Sos paradigm models the lifetime of an invocation in terms of three events: arrival,
start and term. The last of these, term, denotes the normal termination of an invocation.
Sos does not have any event that denotes an abnormal termination of an invocation, i.e.,
via an exception. What happens if an operation is terminated abnormally is implementation
dependent. One possibility is that the abnormal termination will be treated by the synchro-
nisation code as a normal term event. Another possibility is that the synchronisation code
will not be made aware of the abnormal termination at all—this is the case in the DEsp
and GAsP compilers. In this case, the synchronisation code cannot take steps to ensure
that synchronisation variables are left in a consistent state when an invocation terminates
abnormally. For example, the exec counter would not be decremented and information about
the aborted invocation would not be removed from ezecuting list. Clearly, this is a problem.

Strangely, it is a problem that has gone unnoticed in the literature and we are not aware of
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any synchronisation mechanisms for object-oriented languages that explicitly take steps to

ensure compatibility with exceptions.

14.4.2 A Proposal

One of the tasks of a sequential exception handler is to place the sequential (instance) variables
of an object in a consistent state when execution of an operation is terminated abnormally.
In order to integrate a synchronisation mechanism with exception handling, it is necessary
to introduce the complimentary concept of a synchronisation exception handler. This would
have the task of placing the synchronisation variables of an object in a consistent state when
execution of an operation is terminated abnormally.

The obvious way in which to achieve this in the Sos paradigm is to introduce a new
event, exception, which will occur if the execution of an operation is terminated abnormally.
As with the other, existing events—arrival, start and term—the run-time system might ex-
ecute some code automatically at this event, e.g., decrement the exec counter and remove
information about the aborted invocation from the ezecuting list. Programmer-specified ac-
tions at exception events would be used to ensure the consistency of programmer-maintained
synchronisation variables. Presumably, the introduction of the exception event would be
complimented by the introduction of a new synchronisation variable local to invocations,

exception_name, to indicate the reason for the exception.

14.5 Exception Raising via Eiffel-style Assertions

The exception raising mechanism of the Eiffel language [Mey92] is based on assertions. If an
assertion evaluates to false then an exception is raised. Eiffel’s assertions can take a number of
forms. For example, programmers can specify variants and invariants in a looping construct.
Also assertions can be placed anywhere in the body of an operation via a check statement.
However, of more interest to this discussion are the forms of assertions that can be used outside
of the bodies of operations. There are three such forms: preconditions, postconditions and
class invariants. Pre- and postconditions are associated with operations and are evaluated
before and after execution of the operation, respectively. If the post-conditions of all the
operations of the class contain a common component then this component can be factored
out into what is termed the class invariant. This is often done as an aid to code readability.

From here on, the term assertions is used to refer only to those assertions that appear

outside of the bodies of operations, i.e., pre- and postconditions, and class invariants.

14.5.1 Incompatibility of Eiffel-style Assertions and Internal Concurrency

Eiffel’s assertions are expressed in terms of the instance variables of an object. (Pre- and post-
conditions may also access parameters but that is of no relevance to the present discussion.)

Thus one may consider Eiffel’s assertions to be readers of an object’s instance variables. Like-
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wise, operations that update instance variables can be considered to be writers. If a language
supports both concurrency within objects and Eiffel-style assertions then this introduces the
age-old readers/writer problem. This is because an operation that updates instance variables
might be executing while, say, the pre-condition of another operation is being evaluated.
Simply put, Eiffel-style assertions are incompatible with concurrency within objects. This
problem has also been noted by Benveniste and Issarny [BI92, pg. 11]. At least one language,
CEiffel [L6h93], dangerously supports both FEiffel-style assertions and concurrency within ob-
jects. Several other concurrent extensions to Fiffel keep its assertion mechanism but prohibit
concurrency within objects [KB93] [Mey93] [Car93] thus avoiding the problem. However, it
is not clear if the prohibition against internal concurrency in these proposals was made as a

result of an awareness of the incompatibility or for other reasons.

14.5.2 Incompatibility of Eiffel-style Assertions and the Sos Paradigm

When viewed in the context of the Sos paradigm, other incompatibilities between Eiffel-style
assertions and internal concurrency become apparent. These problems centre around when

assertions are evaluated.

client object service object

1 - arrival

.

1-call @— 2 - start

2 — return O\\\

3 —term

Figure 14.4: The events in the lifespan of a typical operation invocation

Consider the diagram in Figure 14.4. In a sequential language, the events call, arrival
and start are all merged together and it does not make sense to distinguish at which one
of these events the precondition of an operation is evaluated.? However, in a concurrent
system these events are separate and it is necessary to define exactly when a precondition is
evaluated. Intuitively, a precondition is an assertion that must be true when an operation
starts execution. As such it seems that it must be evaluated at the start event. If it were
evaluated sooner—at either the call or arrival events—then there is no guarantee that it
would still hold true at the start event since in the meantime another concurrently executing

operation might have updated some instance variables that are used in the precondition.

2For example, Eiffel does not define whether the pre- and post-conditions of an operation are evaluated by
the caller or the callee. However, for practical reasons, most, if not all, implementations of Eiffel evaluate pre-

and post-conditions in callee, i.e., in the body of the operation being invoked.
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Likewise, a sequential language does not distinguish between the term and relurn events
for the evaluation of a postcondition. Intuitively, a postcondition is an assertion that must
be true when an operation terminates execution so it should be evaluated at the term event.
If it were evaluated later, at the relurn event, then there is no guarantee that it would still
hold true due to the possibility of another concurrently executing operation having updated
some instance variables used in the postcondition.

Unfortunately, there is a problem. If pre- and postconditions are to be evaluated at
events then they must be evaluated by synchronisation code which is executed in a critical
region. This can lead to deadlock if the assertions access instance variables indirectly by
invoking, say, boolean operations on the object, e.g, IsFull or IsEmpty for a bounded buffer.
This is because such operations might be synchronised which would result in the code trying
to enter the critical region recursively. To avoid this, the compiler would have to arrange
for unsynchronised versions of operations used in assertions to be invoked when evaluating
assertions. This, of course, leads to an inconsistency in the semantics of operations. An
operation, say, IsFull will be synchronised if invoked directly in an application, but will be
unsynchronised if invoked as part of an assertion evaluation.

Some readers may think that this problem can be solved by evaluating an operation’s pre-
condition not at the start event but just after it, as the first statement inside the body of the
operation; and likewise an operation’s postcondition might be evaluated as the last statement
inside its body, i.e., just before the term event rather than at it. However, this would still be
prone to deadlock. To see why, consider a bounded buffer that includes operations Put and
IsFull. Since Put updates the buffer’s state and IsFull examines it, these two operations will
probably execute in mutual exclusion with respect to each other. If the precondition of Put
includes the expression “not IsFull()” and this precondition is evaluated inside the body of
Put then deadlock will result since IsFull will be prevented from executing due to the fact
that Put is already executing.

One way to solve these problems is to exploit the similarity between assertions and guards,

as we discuss in Section 14.5.3.

14.5.83 Similarities between Assertions and Guards

Consider a bounded buffer with operations Put and Get. If the buffer is to be used in a

sequential environment then suitable preconditions for these operations might be as follows:

Pre(Put): “the buffer is not full”;
Pre(Get): “the buffer is not empty”

These are quite similar to the guards that might be used on a bounded buffer in a concurrent

environment, e.g.:

Put: ezec(Put) = 0 and “the buffer is not full”;
Get: exec(Get) = 0 and “the buffer is not empty”
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The synchronisation guards are similar to the preconditions, except that they contain extra
constraints for the purpose of mutual exclusion. In a language that does not support con-
currency within objects, these mutual exclusion constraints would not have to be specified
and the preconditions would look identical to the synchronisation guards. This similarity
between preconditions and guards used for synchronisation is well known. However, there is
actually very little written about this issue in the literature.

There is a second similarity between preconditions and guards: the problem of safe access
to instance variables in an object that supports internal concurrency. We explained earlier
(in Section 14.5.1) that it is unsafe to evaluate the pre- or postcondition of an operation
while instance variables it is accessing are being updated by another concurrently executing
operation. This is quite similar to the problem of synchronisation code (e.g., in the form of
guards) accessing instance variables while they are being updated by an operation.

The way the Sos paradigm solves the problem of synchronisation code having unsafe
access to instance variables is to forbid such access and instead provide programmers with
the ability to maintain their own synchronisation variables. This begs the question: can a
similar approach be used to tackle the problem of assertions having unsafe access to instance

variables in a concurrent environment? The answer is yes, as we now discuss.

14.5.4 A Proposal for an Event-based Assertion Mechanism

Informally, pre- and postconditions are evaluated at the start and termination of operations.
This suggests that the Sos paradigm, which includes both start and term events, might
provide a suitable infrastructure to support these assertions. Indeed, it would also permit an
assertion to be evaluated at arrival events which, as we show later, can be useful.

However, the Sos paradigm permits actions to be executed at events. If both an action
and an assertion are specified for a particular event then this raises the issue of whether
the action should be executed before the assertion is evaluated, or afterwards. Both possible
orderings make good semantic sense and there is no reason to support one instead of the
other. As such, we suggest that both be supported. We use the notation pre_z_assertion to
denote an assertion that is evaluated at event z (where z is one of arrival, start or term)
before execution of the action for that event. Similarly, post_z_assertion denotes an assertion
that is evaluated after execution of the action for that event. As an example to illustrate the
syntax, the following indicates an assertion that is to be evaluated at the start(Put) event,

before any action that might be specified for that event:
pre_start_assertion(Put): num < Size;

The ability to specify assertions for both before and after the execution of actions of three
different event gives rises to potentially six different assertions in all. While this offers more
flexibility than Eiffel’s two (pre- and postconditions), it also offers the potential for more

complexity.
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We now present an event-based assertion mechanism in order to show that the Sos para-
digm is powerful enough to express not just synchronisation constraints but also assertions.
This mechanism is presented through examples. Note, however, that this mechanism is just

a paper design and has not been implemented.

A Sequential Bounded Buffer with Assertions

We start by using the event-based assertion mechanism to specify constraints on a buffer
to be used in a sequential environment; a later example will modify the buffer to take syn-
chronisation constraints into account too. The class in Figure 14.5 is split in two by the
keyword assertions. Preceding it is the sequential (functional) code of the class, while
assertion-checking code follows this keyword. The assertions are expressed in an Esp-like
syntax. The pre_stari_assertions specify under what conditions the operations Put and Get
can be invoked, and the post_stari_assertions give guarantees about the effect of executing
these operations. The assertion code declares a variable, old_num, local to invocations of Put
and Get. This variable records the value of num when an invocation starts and is used by the

assertion at the term event. This is akin to the usage of old in Eiffel postconditions [Mey92].

class Buffer[elem] {
// instance variables
Buffer(int Size) { ... } // constructor

Put(...){ ...}
Get(...) { ...}

assertions
int  Size, num;
int old_num local to Put, Get;

start(Buffer) — { Size := this_inv.Size; num := 0; }

pre_start_assertion(Put): num < Size;
start(Put) — { this_inv.old_num := num; }
term(Put) — { num ++; }

post_term_assertion(Put): num = this_inv.old num + 1;

pre_start_assertion(Get): num > 0;
start(Get) — { this_inv.old_num := num; }
term(Get) — { num ——; }

post_term_assertion(Get): num = this_inv.old num — 1;

Figure 14.5: Event-based assertions for a sequential Bounded Buffer

There are several other points to note about this example.
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Firstly, there is actually no need to explicitly maintain the variable num since it is equiv-
alent to the expression “term(Put) — term(Get)”. However, the code maintains it as an
example to illustrate the usage of actions in this assertion mechanism.

Secondly, the assertions are expressed in a manner that is separate from, and independent
of, the implementation of a class. This raises the interesting possibility of using an event-
based assertion mechanism as part of a class’s type specification.

Thirdly, the code appears to be more verbose than an equivalent class using Eiffel-style
pre- and postconditions. This is because maintenance of assertion variables is clearly visible
while, in Eiffel, pre- and postconditions are expressed in terms of instance variables, the
maintenance of which is “hidden” in the bodies of the operations. We argued in Chapters 3
and 4 that in practice there is no overlap between instance variables and synchronisation
variables; we do not know if the same holds true for the overlap of instance variables and
assertion variables (and this is certainly an issue that needs to be studied). If not then
programmers may frequently have to maintain pairs of variables in step: one an instance
variable and the other an assertion variable.

Finally, due to the similarity of preconditions and synchronisation guards, there is bound
to be some overlap between assertion variables and synchronisation variables. For example,
the bounded buffer example (Figure 14.5) declares three assertion variables: Size, num and
old_num. The first two of these would also be of use in synchronisation code for a bounded
buffer used in a concurrent environment (as we show in the next example).

Because this assertion mechanism is event-based, there should not be any difficulty in
combining it with a Sos-based synchronisation mechanism such as Esp. Due to the likelihood
of an overlap between synchronisation variables/code and assertion variables/code, we merge
the two together in order to avoid duplication. This is perfectly safe since the event-based
nature of the Sos paradigm ensures that there is no possibility of, say, synchronisation code

accessing a variable while it is being concurrently updated by assertion code.

A Concurrent Bounded Buffer with Assertions

The code in Figure 14.6 illustrates a bounded buffer that contains both assertions and syn-
chronisation code. Two small syntactic points to note are as follows. Firstly, the keyword
synchronisation has been replaced with constraints since the code contained in the second
part of the class is for both sequential constraints (assertions) and synchronisation constraints.
Secondly, the syntax used to denote guards has been changed so as to make it more consistent
with that used to denote assertions.

Some more interesting points to note are as follows.

Firstly, synchronisation guards and sequential assertions happily co-exist in an object
that permits internal concurrency. This is important since, as said earlier, Eiffel-style pre-
and postconditions are incompatible with internal concurrency.

Secondly, the post_term_assertions are more complex than their counterparts in the se-

quential version of the bounded buffer (Figure 14.5). This is because the buffer cannot
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class Buffer[elem] {
// instance variables
Buffer(int Size) { ... } // constructor

Put(...){ ...}
Get(...) { ...}

constraints
int  Size, num;
int old_.num local to Put, Get;
int old_term_get local to Put;
int old_term_put local to Get;

start(Buffer) — { Size := this_inv.Size; num := 0; }

guard(Put): ezec(Put) = 0 and num < Size;
pre_start_assertion(Put): num < Size;
start(Put) — { this_inv.old_num := num; this_inv.old_term_get := term(Get); }
term(Put) — { num ++; }
post_term_assertion(Put): num = this_inv.old_num + 1
— (term(Get) — this_inv.old_term_get);
guard(Get): ezvec(Get) = 0 and num > 0;
pre_start_assertion(Get): num > 0;
start(Get) — { this_inv.old_num := num; this_inv.old_term_put := term(Put); }
term(Get) — { num ——; }
post_term_assertion(Get): num = this_inv.old num — 1
+ (term(Put) — this_inv.old_term_put);

Figure 14.6: Event-based constraints for a concurrent Bounded Buffer

guarantee that, say, there will be one more item in the buffer at the termination of a Put
invocation than there was before it started—it is possible that while a Put invocation is
executing, one or more Get invocations will execute, thus reducing the number of items in
the buffer. As such, the termination assertion is weaker (and more complex). The code
maintains a variable, old_term_get, local to each Put invocation. This records the value of
the term(Get) counter when the Pul invocation starts to execute and is used to calculate
how many Get invocations terminated while the Put invocation was executing. This value is

then used in the term assertion for Put. The term assertion for Get is similarly complex.

Note that this increased complexity in the term constraints is not intrinsic to the con-
straint mechanism itself but rather reflects the fact that it is more difficult to reason about

concurrent programs than sequential ones.

A final point to note about this buffer is the similarity between the guards and the
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pre_start_assertions for the two operations. These assertions are redundant since their truth
is guaranteed by successful evaluations of the guards. However, it is possible that such
redundancy might be useful. For example, the bounded buffer in Figure 14.6 is suitable for
use in a concurrent environment. If the guards were omitted then it would still retain its
assertions and be suitable for use in a sequential environment. If a language had the capability
to compile two versions of a class—one with guards enabled and one with them disabled but
sequential assertions still enabled—then this would permit programmers to write classes that

are reusable in both sequential and concurrent environments.?

The Dining Philosophers with Assertions

The examples so far have illustrated the use of assertions at the start and term events. In

this next example, we illustrate how assertions at arrival events can also be useful.

class Table {
Table(int Size) { ... }
Eat(int pos) { ... }
constraints
int  Size;
start(Table) — { Size := this_inv.Size; }
boolean ShareForks(int i, int j) { ... }
pre_arrival_assertion(Eat): 0 <= this_inv.pos and this_inv.pos < Size;

guard(Eat): there_is_no(p executing Eat: ShareForks(p.pos, this_inv.pos));

Figure 14.7: Dining Philosophers with assertions to check parameter range

The code in Figure 14.7 implements the Dining Philosophers exercise. The constructor
takes a parameter, Size, indicating how many seats are at the table. The constraints code
records its value and uses it in an arrival assertion to immediately reject any invocation of

Fat that contains an out-of-range pos parameter.

14.5.5 Related Work

We said in Section 14.5.3 that although it is widely know that Eiffel-style assertions and
guards are similar, there has been little written about this in the literature. However, a few
papers do deal with this topic. We give a briefl overview of them here as an aid to readers

interested in this area.

? Actually, a class that contains guards is usable in a sequential environment. However, its behaviour in
the face of an errant client would be poor. For example, if a client tried to invoke Get on an empty buffer

then it would “hang” indefinitely rather than raise an exception to signal the error.
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Proposed extension to Eiffel. Meyer [Mey93] proposes a concurrency extension for the
Eiffel language. Recognising the similarity between preconditions and guards, Meyer over-
loads the semantics of preconditions so that they can have their traditional abort semantics
when used in sequential objects, or can have delay semantics (in effect, be guards) when used
in concurrent objects. Concurrency in Meyer’s proposal comes by the ability of a program
to be split over several address spaces (“processors” in the parlance of Meyer’s paper), each
with its own thread of control. Thus there can be concurrency between address spaces but
there can not be any concurrency within an object.

The lack of concurrency within objects means that there is no need to specify, say, mutual
exclusion constraints and thus, as discussed in Section 14.5.3, guards will often look identical
to preconditions. Under these circumstances it would seem that the choice to endow pre-
conditions with dual semantics (abort and delay) is a good one. However, Meyer’s proposal
is not without drawbacks. In particular, no attempt has been made to increase the expres-
sive power of the preconditions—they can access only instance variables and parameters of
the operation being invoked. Thus, as a synchronisation mechanism, this proposal has poor
expressive power. For instance, the inability to compare parameters, or the relative arrival
times, of other pending invocations means that there are many scheduling policies that it

cannot implement easily, if at all.

CEiffel. In the CEiffel language [L6h93], a compiler option can be toggled which determines
whether the synchronisation code of the class being compiled will be processed or silently
ignored. The purpose of this is to be able to obtain both concurrent and sequential versions
of a class from the same source file in order to promote code re-usability.

One of the synchronisation constructs in CFEiffel splits an Eiffel-style precondition in two.
If the compiler is directed to ignore synchronisation code then this synchronisation construct
isignored and the precondition is compiled as a traditional Eiffel-style precondition. However,
if the compiler is directed to process synchronisation constructs then this construct tells the
compiler to treat the first part of the precondition as being akin to (what we have termed)
a pre_arrival_assertion and the second part as being a guard. The pre_arrival_assertion part
is typically used to check the validity of parameters.

The CEiffel language permits concurrency within objects but does not take any precau-
tions to ensure that instance variables are in a consistent state when assertions are being

evaluated.

14.6 Summary

This chapter has discussed several possible areas for future work. Most of these are ways in
which the Sos paradigm might be extended to integrate synchronisation with other language
concepts. We feel that this potential for extension demonstrates the flexibility and power of

the Sos paradigm.
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Chapter 15

Conclusions

The main text of this thesis is split into three parts: Part II defines the Sos paradigm;
Part IIT shows that language support for generic synchronisation policies is feasible; and
Part IV analyses the ISVIS conflict which can hinder the reuse of code in COOPLs. The
main contributions of each of these three parts (summarised in Sections 15.1 through to 15.3)
stand by themselves. However, that is not to say that these three parts are unrelated.

Part II and Part III are related because some of the benefits of the Sos paradigm make
it feasible to provide language support for GSPs without the severe limitations that has
characterised previous attempts to provide such support.

Our survey of inheritance techniques to reduce the harmful effects of the ISVIS conflict
shows that separating synchronisation code from sequential code is important. Since the Sos
paradigm offers this separation of code, we see that Parts I and IV are related.

Finally, Parts III and IV are related because the use of generic synchronisation policies
considerably reduces the harmful effects of the ISVIS conflict.

Sections 15.1 through to 15.3 summarise the main contributions of each of Parts II, III

and IV, respectively.

15.1 The Sos paradigm

The central contribution of the Sos paradigm is the excellent expressive power that it offers.
More particularly, it offers this power without any of the undesirable traits often associated
with expressive power, as we now discuss.

Sos is based on just four concepts. As such, Sos-based mechanisms can avoid complexity.
This is in stark contrast to many other mechanisms which introduce a mass of constructs (and
complexity) in an attempt to increase expressive power. The simplicity of the Sos paradigm
also shows up in the ease with which we were able to introduce a Sos-based mechanism, Esp,
to an existing, object-oriented language.

The Sos paradigm shows that it is possible for synchronisation code to be completely

separated from sequential code. This promotes modularity and is of vital importance in
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being able to provide language support for generic synchronisation policies, which in turn
reduces the harmful effects of the ISVIS conflict.

In an attempt to obtain sufficient expressive power to implement some synchronisation
policies, many languages permit synchronisation code to access the instance variables of an
object. In languages that support concurrency within objects, this access can be dangerous
since synchronisation code may examine an instance variable while it is in an inconsistent
state. The Sos paradigm shows that such access is unnecessary since synchronisation code
can maintain its own variables.

Finally, the Esp synchronisation mechanism, which embodies the concepts of the Sos
paradigm, offers another benefit: it is simultaneously a declarative and a procedural mecha-

nism. As such, it offers excellent expressive power and degrades gracefully.

15.2 Language Support for Generic Synchronisation Policies

There have been a few attempts in the past to provide language support for generic syn-
chronisation policies. However, as we have shown in Section 10.1, these have entailed serious
limitations: they failed to completely separate synchronisation code from sequential code and
hence offered limited expressive power and/or were not fully generic; in some cases policies
could only be instantiated upon individual operations rather than sets of operations; one
language, DRAGOON, confused genericity with inheritance and this resulted in idiosyncrasies
in the type system.

With the aid of the Sos paradigm, we have overcome all of these limitations and have
provided comprehensive support for generic synchronisation policies. Aside from code reuse,
GSPs offer several additional benefits. Firstly, we have shown that GSPs facilitate the optimi-
sation of synchronisation code (via the optimisation by transformation technique). Secondly,
our analysis of the ISVIS conflict shows that its harmful effects are reduced considerably by
the use of GSPs. Thirdly, the instantiation of a generic synchronisation policy is extremely
declarative—even if a procedural synchronisation mechanism is used to implement the policy.
As such, it seems possible that GSPs may do more to reduce the complexity of concurrent
programming than expressively powerful synchronisation mechanisms. Finally, an interesting
possibility is that if a COOPL provides support to instantiate generic synchronisation policies
then it need not provide a synchronisation mechanism to actually write them. This, in turn,

might reduce the complexity of COOPLs.

15.3 Analysis of the ISVIS Conflict

Most of the research to date on the ISVIS conflict (or the “inheritance anomaly” as Matsuoka
calls it) has assumed that the problem is due to a conflict between synchronisation and
inheritance. We have shown that this assumption is incorrect and that the problem is due

to a conflict between two different uses of inheritance. We have conducted a survey to
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determine: (i) how the ISVIS conflict manifests itself in a number of inheritance mechanisms;
and (ii) what techniques are effective in reducing the harmful effects of the ISVIS conflict.
We have shown that the use of generic synchronisation policies considerably reduces these

harmful effects.
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